首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
PB2 is an important subunit of influenza RNA-dependent RNA polymerase (RdRP) and has been recognized as a promising target for the treatment of influenza. We herein report the discovery of a new series of PB2 inhibitors containing the skeleton 5-(5-fluoro-1H-pyrrolo[2,3-b]pyridin-3-yl)pyrazin-2(1H)-one. Compound 12b is the most potent one, which showed KD values of 0.11 μM and 0.19 μM in surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) assays, respectively. In antiviral activity and cellular cytotoxicity assays, compound 12b showed an EC50 value of 1.025 μM and a CC50 value greater than 100 μM. Molecular docking was also used to predict the binding mode of 12b with PB2. Collectively, this study provides a promising lead compound for subsequent anti-influenza drug discovery targeting PB2.  相似文献   

2.
Cyclin-dependent kinase 5 (CDK5) is a serine/threonine protein kinase and its deregulation is implicated in a number of neurodegenerative disorders such as Alzheimer's disease, amyotrophic lateral sclerosis, and ischemic stroke. Using active site homology modeling between CDK5 and CDK2, we explored several different chemical series of potent CDK5 inhibitors. In this report, we describe the design, synthesis, and CDK5 inhibitory activities of quinolin-2(1H)-one derivatives.  相似文献   

3.
Selective PDE3 (phosphodiesterase 3) inhibitors improve cardiac contractility and may be used in congestive heart failure. However, their proarrhythmic potential is the most important side effect. In this work ten new synthetic compounds (3-[(4-methyl-2-oxo-1,2-dihydro-6-quinolinyl)oxy]methylbenzamide analogs: 4aj) were designed, synthesized and tested for the inhibitory activity against human PDE3A and PDE3B. The strategy of the design was based on the structure of vesnarinone (a selective PDE3 inhibitor) and its docking analysis results. The synthetic compounds showed better PDE3 inhibitory activity in comparison with vesnarinone. Using docking analysis, a common binding model of each compound toward PDE3 was suggested. In the next step the potential cardiotonic activity of the best PDE3A inhibitors (4b, IC50 = 0.43 ± 0.04 μM) was evaluated by using the spontaneously beating atria model. In the experiment, atrium of reserpine-treated rat was isolated and the contractile and chronotropic effects of the synthetic compound were assessed. That was carried out in comparison with vesnarinone. The best pharmacological profile was obtained for the compound 4b, which displayed selectivity for increasing the force of contraction (46 ± 3% change over the control) rather than the frequency rate (16 ± 4% change over the control) at 100 μM.  相似文献   

4.
A series of 4-(4-hydroxyphenyl)-6-phenylpyrimidin-2(1H)-ones were identified by HTS as inhibitors of CDC7. Molecular modeling and medicinal chemistry techniques were employed to explore the SAR for this series with a focus on removing potential metabolic liabilities and improving cellular potency.  相似文献   

5.
A series of novel alkynyl substituted 3,4-dihydropyrimidin-2(1H)-one (DHPM) derivatives were designed, synthesized and evaluated in vitro as potential inhibitors of chorismate mutase (CM). All these compounds were prepared via a multi-component reaction (MCR) involving sequential I2-mediated Biginelli reaction followed by Cu-free Sonogashira coupling. Some of them showed promising inhibitory activities when tested at 30 μM. One compound showed dose dependent inhibition of CM with IC50 value of 14.76 ± 0.54 μM indicating o-alkynylphenyl substituted DHPM as a new scaffold for the discovery of promising inhibitors of CM.  相似文献   

6.
To develop non-basic melanin-concentrating hormone receptor 1 (MCHR1) antagonists with a high probability of target selectivity and therapeutic window, we explored neutral bicyclic motifs that could replace the previously reported imidazo[1,2-a]pyridine or 1H-benzimidazole motif. The results indicated that the binding affinity of a chemically neutral 2H-indazole derivative 8a with MCHR1 (hMCHR1: IC50 = 35 nM) was comparable to that of the imidazopyridine and benzimidazole derivatives (1 and 2, respectively) reported so far. However, 8a was positive in the Ames test using TA1537 in S9− condition. Based on a putative intercalation of 8a with DNA, we introduced a sterically-hindering cyclopropyl group on the indazole ring to decrease planarity, which led to the discovery of 1-(2-cyclopropyl-3-methyl-2H-indazol-5-yl)-4-{[5-(trifluoromethyl)thiophen-3-yl]methoxy}pyridin-2(1H)-one 8l without mutagenicity in TA1537. Compound 8l exerted significant antiobesity effects in diet-induced obese F344 rats and exhibited promising safety profile.  相似文献   

7.
A series of novel hedgehog signaling pathway inhibitors have been designed and synthesized based on our previously reported scaffold of 4-(2-pyrimidinylamino)benzamide. The Hh signaling pathway inhibitory activities were evaluated by Gli-luciferase reporter method and most compounds showed more potent inhibitory activities than vismodegib. Three compounds were picked out to evaluated in vivo for their PK properties, and compound 23b bearing a 2-pyridyl A-ring and (morpholin-4-yl)methylene at 3-position of D-ring demonstrated satisfactory PK properties. This study suggested the 4-(2-pyrimidinylamino)benzamides were a series of potent Hh signaling pathway inhibitors, deserving to further structural optimization.  相似文献   

8.
Human cells utilize a variety of complex DNA repair mechanisms in order to combat constant mutagenic and cytotoxic threats from both exogenous and endogenous sources. The RecQ family of DNA helicases, which includes Bloom helicase (BLM), plays an important function in DNA repair by unwinding complementary strands of duplex DNA as well as atypical DNA structures such as Holliday junctions. Mutations of the BLM gene can result in Bloom syndrome, an autosomal recessive disorder associated with cancer predisposition. BLM-deficient cells exhibit increased sensitivity to DNA damaging agents indicating that a selective BLM inhibitor could be useful in potentiating the anticancer activity of these agents. In this work, we describe the medicinal chemistry optimization of the hit molecule following a quantitative high-throughput screen of >355,000 compounds. These efforts lead to the identification of ML216 and related analogs, which possess potent BLM inhibition and exhibit selectivity over related helicases. Moreover, these compounds demonstrated cellular activity by inducing sister chromatid exchanges, a hallmark of Bloom syndrome.  相似文献   

9.
Inhibition of the phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway is one of the most intensively studied approaches to cancer therapy. Rational design led to the identification of novel 7-amino-5-methyl-1,6-naphthyridin-2(1H)-one derivatives as potent PI3K/mTOR dual inhibitors. Design, synthesis and structure activity relationship are reported.  相似文献   

10.
New series of 2-(4-methylsulfonylphenyl) and 2-(4-sulfamoylphenyl)pyrimidines were synthesized and evaluated for their ability to inhibit cyclooxygenase-2 (COX-2). COX-1 and COX-2 inhibitory activity of these compounds was determined using purified enzyme (PE) and human whole blood (HWB) assays. Extensive structure-activity relationship (SAR) work was carried out within these series, and a wide number of potent and specific COX-2 inhibitors were identified (HWB COX-2 IC(50)=2.4-0.3nM and 80- to 780-fold more selective than rofecoxib).  相似文献   

11.
A lead compound 1, which inhibits the catalytic activity of PTK6, was selected from a chemical library. Derivatives of compound 1 were synthesized and analyzed for inhibitory activity against PTK6 in vitro and at the cellular level. Selected compounds were analyzed for cytotoxicity in human foreskin fibroblasts using MTT assays and for selectivity towards PTK members in HEK 293 cells. Compounds 20 (in vitro IC50 = 0.12 μM) and 21 (in vitro IC50 = 0.52 μM) showed little cytotoxicity, excellent inhibition of PTK6 in vitro and at the cellular level, and selectivity for PTK6. Compounds 20 and 21 inhibited phosphorylation of specific PTK6 substrates in HEK293 cells. Thus, we have identified novel PTK6 inhibitors that may be used as treatments for PTK6-positive carcinomas, including breast cancer.  相似文献   

12.
To identify compounds with strong mPGES-1 inhibitory activity and clear in vitro ADME profile, we optimized the lead compound 1 by carrying our substitutions at the C(7)- and C(8)-positions. Replacement of the bromine atom of 1 with various substituents led to identification of the phenyl group as the best C(7)-substituent giving strong inhibitory activity with good in vitro ADME profile. Further SAR examination on both the C(2)- and the C(7)-phenyl groups provided compound 39 as the best candidate for further development. Compound 39 exhibited strong mPGES-1 inhibitory activity (IC50 = 4.1 nM), potent cell-based functional activity (IC50 = 33 nM) with good mPGES-1 selectivity (over 700-fold), excellent in vitro ADME profile, and good oral absorption in rat PK study.  相似文献   

13.
Two novel series of potent and selective FTase inhibitors have been synthesized using structure-based design. Medicinal chemistry efforts led to the discovery of compound 4e with potent cellular activity and good oral bioavailability in dog. A synthetic route toward novel heterocycles 1,5-dimethyl-6-oxo-4-aryl-1,6-dihydro-pyridine-2-carbonitrile was established. The structure of compound 5c was confirmed by X-ray crystallography.  相似文献   

14.
The 2,3-dihydrospiro[4H-thiopyrano[2,3-b]pyridin-4,4'-imidazolidine]-2',5'-dione 3 and its 7-methyl analogue 4 were synthesized and tested for their ability to inhibit aldose reductase (ALR2). To expand the structure-activity relationships, the sulfone 5 and the acetic acid derivative 7 were also prepared and tested. Compounds 3 and 4 proved to be potent ALR2 inhibitors, with IC50 values in the submicromolar range (0.96 and 0.94 microM, respectively) similar to that of sorbinil (0.65 microM). Moreover, compound 3 was found to be highly potent in preventing cataract development in severely galactosemic rats, like tolrestat, when administered as an eyedrop solution. Docking simulations of both R- and S-isomers of 3 into the ALR2 crystal structure were carried out to guide, prospectively, the design of new analogues.  相似文献   

15.
Monoacylglycerol lipase is a serine hydrolase that plays a major role in the degradation of the endocannabinoid neurotransmitter 2-arachidonoylglycerol. A wide number of MAGL inhibitors are reported in literature; however, many of them are characterised by an irreversible mechanism of action and this behavior determines an unwanted chronic MAGL inactivation, which acquires a functional antagonism of the endocannabinoid system. The possible use of reversible MAGL inhibitors has only recently been explored, due to the lack of known compounds possessing efficient reversible inhibitory activities. In this work, we report a new series of terphenyl-2-methyloxazol-5(4H)-one derivatives characterised by a reversible MAGL-inhibition mechanism. Among them, compound 20b showed to be a potent MAGL reversible inhibitor (IC50?=?348?nM) with a good MAGL/FAAH selectivity. Furthermore, this compound showed antiproliferative activities against two different cancer cell lines that overexpress MAGL.  相似文献   

16.
The development of potent and selective urokinase-type plasminogen activator (uPA) inhibitors based on the lead molecule 2-(2-hydroxy-3-ethoxyphenyl)-1H-benzimidazole-5-carboxamidine (3a) is described.  相似文献   

17.
A novel series of 4-arylphthalazin-1(2H)-one linked to arylpiperidines were synthesized and evaluated as MCH-R1 antagonists. The results of an extensive SAR study probing the effects of substituents on the 4-arylphthalazin-1(2H)-one C-4 aryl group led to the identification of the 4-(3,4-difluorophenyl) derivative as a highly potent MCH-R1 inhibitor with an IC(50)=1nM. However, further investigations showed that this substance has unacceptable pharmacokinetic properties including a high clearance and volume of distribution.  相似文献   

18.
The discovery and characterization of two new chemical classes of potent and selective Polo-like kinase 1 (PLK1) inhibitors is reported. For the most interesting compounds, we discuss the biological activities, crystal structures and preliminary pharmacokinetic parameters. The more advanced compounds inhibit PLK1 in the enzymatic assay at the nM level and exhibit good activity in cell proliferation on A2780 cells. Furthermore, these compounds showed high levels of selectivity on a panel of unrelated kinases, as well as against PLK2 and PLK3 isoforms. Additionally, the compounds show acceptable oral bioavailability in mice making these inhibitors suitable candidates for further in vivo activity studies.  相似文献   

19.
A series of dihydropyrimidin-(2H)-one analogues and rhodanine derivatives were synthesized and their inhibitory effects on the diphenolase activity of mushroom tyrosinase were evaluated. The results showed that some of the synthesized compounds exhibited significant inhibitory activities. Especially, compound 15 bearing a hydroxyethoxyl group at position-4 of phenyl ring exhibited most potent tyrosinase inhibitory activity with IC50 value of 0.56 mM. The inhibition mechanism analysis of compound 15 demonstrated that the inhibitory effect of the compound on the tyrosinase was irreversible. These results suggested that such compounds might be served as lead compounds for further designing new potential tyrosinase inhibitors.  相似文献   

20.
A series of 3-aryl-4-hydroxyquinolin-2(1H)-ones with fatty acid synthase inhibitory activity was prepared. Starting from a derivative with an IC(50) = 1.4 microM, SAR studies led to compounds with more than 70-fold increase in potency (IC(50) < 20 nM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号