首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Farnesoid X receptor (FXR) is a nuclear receptor related to lipid and glucose homeostasis and is considered an important molecular target to treatment of metabolic diseases as diabetes, dyslipidemia, and liver cancer. Nowadays, there are several FXR agonists reported in the literature and some of it in clinical trials for liver disorders. Herein, a compound series was employed to generate QSAR models to better understand the structural basis for FXR activation by anthranilic acid derivatives (AADs). Furthermore, here we evaluate the inclusion of the standard deviation (SD) of EC50 values in QSAR models quality. Comparison between the use of experimental variance plus average values in model construction with the standard method of model generation that considers only the average values was performed. 2D and 3D QSAR models based on the AAD data set including SD values showed similar molecular interpretation maps and quality (Q2LOO, Q2(F2), and Q2(F3)), when compared to models based only on average values. SD-based models revealed more accurate predictions for the set of test compounds, with lower mean absolute error indices as well as more residuals near zero. Additionally, the visual interpretation of different QSAR approaches agrees with experimental data, highlighting key elements for understanding the biological activity of AADs. The approach using standard deviation values may offer new possibilities for generating more accurate QSAR models based on available experimental data.  相似文献   

2.
Myeloid cell leukemia-1 (Mcl-1) has been a validated and attractive target for cancer therapy. Over-expression of Mcl-1 in many cancers allows cancer cells to evade apoptosis and contributes to the resistance to current chemotherapeutics. Here, we identified new Mcl-1 inhibitors using a multi-step virtual screening approach. First, based on two different ligand-receptor complexes, 20 pharmacophore models were established by simultaneously using ‘Receptor-Ligand Pharmacophore Generation’ method and manual build feature method, and then carefully validated by a test database. Then, pharmacophore-based virtual screening (PB-VS) could be performed by using the 20 pharmacophore models. In addition, docking study was used to predict the possible binding poses of compounds, and the docking parameters were optimized before performing docking-based virtual screening (DB-VS). Moreover, a 3D QSAR model was established by applying the 55 aligned Mcl-1 inhibitors. The 55 inhibitors sharing the same scaffold were docked into the Mcl-1 active site before alignment, then the inhibitors with possible binding conformations were aligned. For the training set, the 3D QSAR model gave a correlation coefficient r2 of 0.996; for the test set, the correlation coefficient r2 was 0.812. Therefore, the developed 3D QSAR model was a good model, which could be applied for carrying out 3D QSAR-based virtual screening (QSARD-VS). After the above three virtual screening methods orderly filtering, 23 potential inhibitors with novel scaffolds were identified. Furthermore, we have discussed in detail the mapping results of two potent compounds onto pharmacophore models, 3D QSAR model, and the interactions between the compounds and active site residues.  相似文献   

3.
We have performed quantitative structure–activity relationship (QSAR) and quantitative activity–activity relationship (QAAR) studies for aryltriazolylhydroxamates having antimalarial activity data against both chloroquine-sensitive (D6 clone) and chloroquine-resistant (W2 clone) strains of Plasmodium falciparum to understand the relationships between the biological activity and molecular properties for the design of new compounds. The QSAR studies were performed using 35 compounds among which 26 molecules were taken using k-means clustering technique in the training set for the derivation of the QSAR models and nine molecules were kept as the test-set compounds to evaluate the predictive ability of the derived models. The chemometric tool used for the analysis was the genetic function approximation. The developed models were analysed in terms of their predictive ability, and comparable results were obtained for cross-validated predictive variance (Q 2) and externally predicted variance (R 2 pred) values (0.761 and 0.829, respectively, for the D6 model, 0.708 and 0.748, respectively, for the W2 model and 0.984 and 0.982, respectively for the QAAR model). The QSAR models suggest that the number of methylene groups (between the triazolyl and hydroxamate moieties) and partially negatively charged surface areas of the molecules are important parameters for the antimalarial activity.  相似文献   

4.
5.
Comparative quantitative structure–activity relationship (QSAR) analyses of peptide deformylase (PDF) inhibitors were performed with a series of previously published (British Biotech Pharmaceuticals, Oxford, UK) reverse hydroxamate derivatives having antibacterial activity against Escherichia coli PDF, using 2D and 3D QSAR methods, comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA), and hologram QSAR (HQSAR). Statistically reliable models with good predictive power were generated from all three methods (CoMFA r 2 = 0.957, q 2 = 0.569; CoMSIA r 2 = 0.924, q 2 = 0.520; HQSAR r 2 = 0.860, q 2 = 0.578). The predictive capability of these models was validated by a set of compounds that were not included in the training set. The models based on CoMFA and CoMSIA gave satisfactory predictive r 2 values of 0.687 and 0.505, respectively. The model derived from the HQSAR method showed a low predictability of 0.178 for the test set. In this study, 3D prediction models showed better predictive power than 2D models for the test set. This might be because 3D information is more important in the case of datasets containing compounds with similar skeletons. Superimposition of CoMFA contour maps in the active site of the PDF crystal structure showed a meaningful correlation between receptor–ligand binding and biological activity. The final QSAR models, along with information gathered from 3D contour and 2D contribution maps, could be useful for the design of novel active inhibitors of PDF. Figure Superimposition of comparative molecular field analysis (CoMFA) contour plot in the active site of peptide deformylase (PDF)  相似文献   

6.
7.
Among several biological targets to treat AIDS, HIV integrase is a promising enzyme that can be employed to develop new anti-HIV agents. The aim of this work is to propose a mechanistic interpretation of HIV-1 integrase inhibition and to rationalize the molecular features related to the binding affinity of studied ligands. A set of 79 HIV-1 integrase inhibitors and its relationship with biological activity are investigated employing 2D and 3D QSAR models, docking analysis and DFT studies. Analyses of docking poses and frontier molecular orbitals revealed important features on the main ligand-receptor interactions. 2D and 3D models presenting good internal consistency, predictive power and stability were obtained in all cases. Significant correlation coefficients (r2 = 0.908 and q2 = 0.643 for 2D model; r2 = 0.904 and q2 = 0.719 for 3D model) were obtained, indicating the potential of these models for untested compounds. The generated holograms and contribution maps revealed important molecular requirements to HIV-1 IN inhibition and several evidences for molecular modifications. The final models along with information resulting from molecular orbitals, 2D contribution and 3D contour maps should be useful in the design of new inhibitors with increased potency and selectivity within the chemical diversity of the data.  相似文献   

8.
9.
10.
11.
Several small-molecule CDK inhibitors have been identified, but none have been approved for clinical use in the past few years. A new series of 4-[(3-hydroxybenzylamino)-methylene]-4H-isoquinoline-1,3-diones were reported as highly potent and selective CDK4 inhibitors. In order to find more potent CDK4 inhibitors, the interactions between these novel isoquinoline-1,3-diones and cyclin-dependent kinase 4 was explored via in silico methodologies such as 3D-QSAR and docking on eighty-one compounds displaying potent selective activities against cyclin-dependent kinase 4. Internal and external cross-validation techniques were investigated as well as region focusing, bootstraping and leave-group-out. A training set of 66 compounds gave the satisfactory CoMFA model (q 2 = 0.695, r 2 = 0.947) and CoMSIA model (q 2 = 0.641, r 2 = 0.933). The remaining 15 compounds as a test set also gave good external predictive abilities with r 2 pred values of 0.875 and 0.769 for CoMFA and CoMSIA, respectively. The 3D-QSAR models generated here predicted that all five parameters are important for activity toward CDK4. Surflex-dock results, coincident with CoMFA/CoMSIA contour maps, gave the path for binding mode exploration between the inhibitors and CDK4 protein. Based on the QSAR and docking models, twenty new potent molecules have been designed and predicted better than the most active compound 12 in the literatures. The QSAR, docking and interactions analysis expand the structure-activity relationships of constrained isoquinoline-1,3-diones and contribute towards the development of more active CDK4 subtype-selective inhibitors.  相似文献   

12.
13.
A combined application of statistical molecular design (SMD), quantitative structure–activity relationship (QSAR) modeling and prediction of new active compounds was effectively used to develop salicylidene acylhydrazides as inhibitors of type III secretion (T3S) in the Gram-negative pathogen Yersinia pseudotuberculosis. SMD and subsequent synthesis furnished 50 salicylidene acylhydrazides in high purity. Based on data from biological evaluation in T3S linked assays 18 compounds were classified as active and 25 compounds showed a dose-dependent inhibition. The 25 compounds were used to compute two multivariate QSAR models and two multivariate discriminant analysis models were computed from both active and inactive compounds. Three of the models were used to predict 4416 virtual compounds in consensus and eight new compounds were selected as an external test set. Synthesis and biological evaluation of the test set in Y. pseudotuberculosis and the intracellular pathogen Chlamydia trachomatis validated the models. Y. pseudotuberculosis and C. trachomatis cell-based infection models showed that compounds identified in this study are selective and non-toxic inhibitors of T3S dependent virulence.  相似文献   

14.
Many protein kinase (PK) inhibitors have been reported in recent years, but only a few have been approved for clinical use. The understanding of the available molecular information using computational tools is an alternative to contribute to this process. With this in mind, we studied the binding modes of 77 maleimide derivates inside the PK glycogen synthase kinase 3 beta (GSK3β) using docking experiments. We found that the orientations that these compounds adopt inside GSK3β binding site prioritize the formation of hydrogen bond (HB) interactions between the maleimide group and the residues at the hinge region (residues Val135 and Asp133), and adopt propeller-like conformations (where the maleimide is the propeller axis and the heterocyclic substituents are two slanted blades). In addition, quantitative structure–activity relationship (QSAR) models using CoMSIA methodology were constructed to explain the trend of the GSK3β inhibitory activities for the studied compounds. We found a model to explain the structure–activity relationship of non-cyclic maleimide (NCM) derivatives (54 compounds). The best CoMSIA model (training set included 44 compounds) included steric, hydrophobic, and HB donor fields and had a good Q2 value of 0.539. It also predicted adequately the most active compounds contained in the test set. Furthermore, the analysis of the plots of the steric CoMSIA field describes the elements involved in the differential potency of the inhibitors that can be considered for the selection of suitable inhibitors.  相似文献   

15.
Abstract

Tumour hypoxia results in dramatic changes in the gene expression, proliferation and survival of tumour cells. The tumour cells shift towards anaerobic glycolysis which results in change of pH in their microenvironment. In response to this stress, over expression of carbonic anhydrase IX (CA IX) genes is observed in many solid tumours. So, selective inhibition of CA IX can be a promising target for anti-cancer drugs. In this work in silico tools like atom-based 3D-QSAR modelling, pharmacophore-based virtual screening and molecular docking were used to identify potential CA IX inhibitors. Based on the training set used in the QSAR model, twenty pharmacophore models were generated. Out of these, HHHR_1, AHHR_1, DHHHR_1, AHHHR_1 model was used to screen a database of 1,50,000 compounds retrieved from ZINC 15 database. R2 and Q2 was 0.9864 and 0.8799, respectively, for the developed QSAR model. 163 compounds showed a phase screen score above 2.4 in which ZINC02260669 was the highest ranked (screen score, 2.852058) compound in all the four models. Built QSAR model was used to predict the activity of all these 163 compounds and ZINC72370966 showed the highest predicted activity with pKi value of 7.649. These compounds were docked against CA IX (human) protein (PDB ID 5FL6) and molecular docking results showed favourable binding interactions for the best ten identified hits. This work gives design insights and some potential scaffolds which can be developed as CA IX inhibitors.

Communicated by Ramaswamy H. Sarma  相似文献   

16.
Tuberculosis (TB) still remains one of the most deadly infectious diseases. Mycobacterium tuberculosis thymidine monophosphate kinase (TMPKmt) has emerged as an attractive molecular target for the design of a novel class of anti-TB agents since blocking it will affect the pathways involved in DNA replication. Aiming at shedding some light on structural and chemical features that are important for the affinity of thymidine derivatives to TMPKmt, we have employed a special fragment-based method to develop robust quantitative structure-activity relationship models for a large and chemically diverse series of thymidine-based analogues. Significant statistical parameters (r 2 ?=?0.94, q 2 ?=?0.76, r 2 pred ?=?0.89) were obtained, indicating the reliability of the hologram QSAR model in predicting the biological activity of untested compounds. The 2D model was then used to predict the potency of an external test set, and the predicted values obtained from the HQSAR model were in good agreement with the experimental results. We have accordingly designed novel TMPKmt inhibitors by utilizing the fragments proposed by HQSAR analysis and predicted with good activity in the developed models. The new designed compounds also presented drug-like characteristics based on Lipinski’s rule of 5. The generated molecular recognition patterns gathered from the HQSAR analysis combined with quantum mechanics/molecular mechanics (QM/MM) docking studies, provided important insights into the chemical and structural basis involved in the molecular recognition process of this series of thymidine analogues and should be useful for the design of new potent anti-TB agents.  相似文献   

17.
Plasmodium vivax (Pv) is the second most malaria causing pathogen among Plasmodium species. M18 aspartic aminopeptidase (M18AAP) protein is a single gene copy present in Plasmodium. This protein is functional at the terminal stage of hemoglobin degradation of host and completes the hydrolysis process which makes it an important target for new chemotherapeutics. No experimental and structural study on M18AAP protein of P. vivax is reported till today. This paper advocates the application of multiple computational approaches like protein model prediction, ligand-based 3D QSAR study, pharmacophore, structure-based virtual screening and molecular docking simulation for identification of potent lead molecules against the enzyme. The 3D QSAR model was developed using known bioactive compounds against the PvM18AAP protein which statistically signify the k-NN model with q^2 = 0.7654. The study reports a lead molecule from ligand-centric approach with good binding affinity and possessing lowest docking score. The findings will be helpful for in-vivo and in-vitro validations and development of potent anti-malarial molecules against the drug resistant strains of malaria parasite.  相似文献   

18.
19.
Abstract

HCV NS5B polymerase has been one of the most attractive targets for developing new drugs for HCV infection and many drugs were successfully developed, but all of them were designed for targeting Hepatitis C Virus genotype 1 (HCV GT1). Hepatitis C virus genotype 4a (HCV GT4a) dominant in Egypt has paid less attention. Here, we describe our protocol of virtual screening in identification of novel potential potent inhibitors for HCV NS5B polymerase of GT4a using homology modeling, protein–ligand interaction fingerprint (PLIF), docking, pharmacophore, and 3D CoMFA quantitative structure activity relationship (QSAR). Firstly, a high-quality 3D model of HCV NS5B polymerase of GT4a was constructed using crystal structure of HCV NS5B polymerase of GT1 (PDB ID: 3hkw) as a template. Then, both the model and the template were simulated to compare conformational stability. PLIF was generated using five crystal structures of HCV NS5B (PDB ID: 4mia, 4mib, 4mk9, 4mka, and 4mkb), which revealed the most important residues and their interactions with the co-crystalized ligands. After that, a 3D pharmacophore model was developed from the generated PLIF data and then used as a screening filter for 17000328 drug-like zinc database compounds. 900 compounds passed the pharmacophore filter and entered the docking-based virtual screening stage. Finally, a 3D CoMFA QSAR was developed using 42 compounds as a training and 19 compounds as a test set. The 3D CoMFA QSAR was used to design and screen some potential inhibitors, these compounds were further evaluated by the docking stage. The highest ranked five hits from docking result (compounds (p1–p4) and compound q1) were selected for further analysis.

Communicated by Ramaswamy H. Sarma  相似文献   

20.
The peroxisome proliferator-activated receptors (PPARs) have increasingly become attractive targets for developing novel anti-type 2 diabetic drugs. We employed comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) to study three-dimensional quantitative structure–activity relationship (3D QSAR) based on existing agonists of PPAR (including five thiazolidinediones and 74 tyrosine-based compounds). Predictive 3D QSAR models with conventional r2 and cross-validated coefficient (q2) values up to 0.974 and 0.642 for CoMFA and 0.979 and 0.686 for COMSIA were established using the SYBYL package. These models were validated by a test set containing 18 compounds. The CoMFA and CoMSIA field distributions are in general agreement with the structural characteristics of the binding pockets of PPAR, which demonstrates that the 3D QSAR models built here are very useful in predicting activities of novel compounds for activating PPAR.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号