首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
mTOR (the ammalian target of mpamycin)是一个进化上十分保守的蛋白激酶,属于PIKK(the phosphatidylinsoitol kinase—related kinase)超家族,作为Ser/Thr激酶而起作用。它可以汇聚和整合来自于营养、生长因子、能量和环境压力对细胞的刺激信号,进而通过下游效应器(4EBPl和S6Ks)调节细胞生长。mTOR信号通路还影响胚胎干细胞和早期胚胎的发育,并且与肿瘤、肥胖及代谢紊乱等疾病有关。对mTOR信号通路的生理功能、分子组成和调节机制的研究不仅可以深入了解细胞生长调控的机制,而且对于相关疾病的治疗具有重要意义。  相似文献   

2.
The mammalian target of rapamycin (mTOR) is an evolutionally conserved kinase which exists in two distinct structural and functional complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). Of the two complexes, mTORC1 couples nutrient abundance to cell growth and proliferation by sensing and integrating a variety of inputs arising from amino acids, cellular stresses, energy status, and growth factors. Defects in mTORC1 regulation are implicated in the development of many metabolic diseases, including cancer and diabetes. Over the past decade, significant advances have been made in deciphering the complexity of the signaling processes contributing to mTORC1 regulation and function, but the mechanistic details are still not fully understood. In particular, how amino acid availability is sensed by cells and signals to mTORC1 remains unclear. In this review, we discuss the current understanding of nutrient-dependent control of mTORC1 signaling and will focus on the key components involved in amino acid signaling to mTORC1.  相似文献   

3.
mTOR signaling in growth control and disease   总被引:4,自引:0,他引:4  
Laplante M  Sabatini DM 《Cell》2012,149(2):274-293
The mechanistic target of rapamycin (mTOR) signaling pathway senses and integrates a variety of environmental cues to regulate organismal growth and homeostasis. The pathway regulates many major cellular processes and is implicated in an increasing number of pathological conditions, including cancer, obesity, type 2 diabetes, and neurodegeneration. Here, we review recent advances in our understanding of the mTOR pathway and its role in health, disease, and aging. We further discuss pharmacological approaches to treat human pathologies linked to mTOR deregulation.  相似文献   

4.
The mammalian target of rapamycin complex 1 (mTORC1) functions as an environmental sensor to promote critical cellular processes such as protein synthesis, cell growth, and cell proliferation in response to growth factors and nutrients. While diverse stimuli regulate mTORC1 signaling, the direct molecular mechanisms by which mTORC1 senses and responds to these signals remain poorly defined. Here we investigated the role of mTOR phosphorylation in mTORC1 function. By employing mass spectrometry and phospho-specific antibodies, we demonstrated novel phosphorylation on S2159 and T2164 within the mTOR kinase domain. Mutational analysis of these phosphorylation sites indicates that dual S2159/T2164 phosphorylation cooperatively promotes mTORC1 signaling to S6K1 and 4EBP1. Mechanistically, S2159/T2164 phosphorylation modulates the mTOR-raptor and raptor-PRAS40 interactions and augments mTORC1-associated mTOR S2481 autophosphorylation. Moreover, mTOR S2159/T2164 phosphorylation promotes cell growth and cell cycle progression. We propose a model whereby mTOR kinase domain phosphorylation modulates the interaction of mTOR with regulatory partner proteins and augments intrinsic mTORC1 kinase activity to promote biochemical signaling, cell growth, and cell cycle progression.  相似文献   

5.
An early signaling event activated by amino acids and growth factors in many cell types is the phosphorylation of the mammalian target of rapamycin (mTOR; FRAP), which is functionally linked to ribosomal protein s6 kinase (p70(s6k)), a kinase that plays a critical regulatory role in the translation of mRNAs and protein synthesis. We previously showed that intestinal cell migration, the initial event in epithelial restitution, is enhanced by l-arginine (ARG). In this study, we used amino acids as prototypic activators of mTOR and ARG, IGF-1, or serum as recognized stimulators of intestinal cell migration. We found that 1) protein synthesis is required for intestinal cell migration, 2) mTOR/p70(s6k) pathway inhibitors (rapamycin, wortmannin, and intracellular Ca(2+) chelation) inhibit cell migration, 3) ARG activates migration and mTOR/p70(s6k) (but not ERK-2) in migrating enterocytes, and 4) immunocytochemistry reveals abundant p70(s6k) staining in cytoplasm, whereas phospho-p70(s6k) is virtually all intranuclear in resting cells but redistributes to the periphery on activation by ARG. We conclude that mTOR/p70(s6k) signaling is essential to intestinal cell migration, is activated by ARG, involves both nuclear and cytoplasmic events, and may play a role in intestinal repair.  相似文献   

6.
7.
Regulation of cell growth in response to nutrients is crucial for the survival of all organisms. In yeast, cell growth and division require two signaling pathways, TORC1 and PKA. Activation of these pathways crucially depends on intracellular metabolic signals, but the mechanisms remain elusive. Recent studies have identified potential activators of TORC1 and have highlighted a crucial role for the endomembrane system. Moreover, calcium was recognized as an important second messenger for TORC1 activation in response to amino acid levels. On the contrary, genetic analysis indicates that PKA activation depends on an intracellular glucose metabolite. Together with novel quantitative approaches, these findings provide important groundwork in our understanding of the molecular mechanisms for nutrient sensing in yeast and humans.  相似文献   

8.
9.
Expanding mTOR signaling   总被引:16,自引:0,他引:16  
Yang Q  Guan KL 《Cell research》2007,17(8):666-681
The mammalian target of rapamycin (mTOR) has drawn growth control and its involvement in human tumorigenesis much attention recently because of its essential role in cell Great endeavors have been made to elucidate the functions and regulation of mTOR in the past decade. The current prevailing view is that mTOR regulates many fundamental biological processes, such as cell growth and survival, by integrating both intracellular and extracellular signals, including growth factors, nutrients, energy levels, and cellular stress. The significance of roTOR has been highlighted most recently by the identification of mTOR-associated proteins. Amazingly, when bound to different proteins, mTOR forms distinctive complexes with very different physiological functions. These findings not only expand the roles that mTOR plays in cells but also further complicate the regulation network. Thus, it is now even more critical that we precisely understand the underlying molecular mechanisms in order to directly guide the development and usage of anti-cancer drugs targeting the mTOR signaling pathway. In this review, we will discuss different mTOR-associated proteins, the regulation of mTOR complexes, and the consequences of mTOR dysregulation under pathophysiological conditions.  相似文献   

10.
哺乳动物雷帕霉素靶蛋白通路与细胞自噬   总被引:1,自引:0,他引:1  
细胞自噬作为真核生物中最基本的生命现象,广泛参与机体的多种生理和病理过程,其发生的分子机制复杂且高度保守。哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)通路和Beclin1及相关因子发挥了最直接的调控作用。mTOR可通过上游各信号因子的调节引起自身活性的变化,并通过调节下游复合物Atg1/ULK的生成诱导细胞自噬。弄清mTOR通路及其对自噬复合物的作用机制将有助于从分子水平上对各种肿瘤疾病进行分析和治疗。  相似文献   

11.
mTOR信号途径与肿瘤   总被引:7,自引:0,他引:7  
郑杰 《生命科学》2006,18(3):261-265
mTOR信号途径是最近新出现的细胞内重要信号途径,该途径在进化上高度保守,主要通过控制蛋白合成来调节细胞生长。现发现人体某些错构瘤综合征和恶性肿瘤存在mTOR信号途径的异常激活,雷帕霉素及其衍生物是mTOR信号特异性的抑制荆。这些新发现对了解细胞的生长调控和肿瘤的靶向性治疗具有重要意义。  相似文献   

12.
mTOR signaling in disease   总被引:3,自引:0,他引:3  
The target of rapamycin (TOR) is a highly conserved serine/threonine kinase and a central controller of cell growth, metabolism and aging. Mammalian TOR (mTOR) is activated in response to nutrients, growth factors and cellular energy. Dysregulated mTOR signaling has been implicated in major disease. Here we review recent findings on the role of mTOR in cancer, metabolic disorders, neurological diseases, and inflammation.  相似文献   

13.
Soulard A  Hall MN 《Cell》2007,129(2):434
  相似文献   

14.
The function of Casein kinase 2 beta (CSNK2B) in human malignancies has drawn increasing attention in recent years. However, its role in colorectal cancer (CRC) remains unclear. In the present study, we aimed to explore the expression and biological functions of CSNK2B in CRC. Public gene expression microarray data from online database and immunohistochemistry analysis demonstrated that CSNK2B was highly expressed in CRC tissues than in normal tissues. In vitro and in vivo cellular functional experiments showed that increased CSNK2B expression promoted CRC cell viability and tumorigenesis of CRC. Further western blots and rescue experiments confirmed that CSNK2B promoted CRC cell proliferation mainly by activating the mTOR signaling pathway. These findings identified CSNK2B as a novel oncogene contributing to the development of CRC.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12079-021-00619-1.  相似文献   

15.
Munk R  Ghosh P  Ghosh MC  Saito T  Xu M  Carter A  Indig F  Taub DD  Longo DL 《PloS one》2011,6(9):e24667

Background

CXCL12 is a pleiotropic chemokine involved in multiple different processes such as immune regulation, inflammatory responses, and cancer development. CXCL12 is also a potent chemokine involved in chemoattraction of T cells to the site of infection or inflammation. Mammalian target of rapamycin (mTOR) is a serine-threonine kinase that modulates different cellular processes, such as metabolism, nutrient sensing, protein translation, and cell growth. The role of mTOR in CXCL12-mediated resting T cell migration has yet to be elucidated.

Methodology/Principal Findings

Rapamycin, an inhibitor of mTOR, significantly inhibits CXCL12 mediated migration of both primary human resting T cells and human T cell leukemia cell line CEM. p70S6K1, an effector molecule of mTOR signaling pathway, was knocked down by shRNA in CEM cells using a lentiviral gene transfer system. Using p70S6K1 knock down cells, we demonstrate the role of mTOR signaling in T cell migration both in vitro and in vivo.

Conclusions

Our data demonstrate a new role for mTOR in CXCL12-induced T cell migration, and enrich the current knowledge regarding the clinical use of rapamycin.  相似文献   

16.
Comment on: Yan L, et al. Mol Cell 2010; 37:633-42.  相似文献   

17.
Comment on: Kim S, et al. Cell Metab 2011; 13:215-21.  相似文献   

18.
The tuberous sclerosis tumor suppressors TSC1 and TSC2 regulate the mTOR pathway to control translation and cell growth in response to nutrient and growth factor stimuli. We have recently identified the stress response REDD1 gene as a mediator of tuberous sclerosis complex (TSC)-dependent mTOR regulation by hypoxia. Here, we demonstrate that REDD1 inhibits mTOR function to control cell growth in response to energy stress. Endogenous REDD1 is induced following energy stress, and REDD1-/- cells are highly defective in dephosphorylation of the key mTOR substrates S6K and 4E-BP1 following either ATP depletion or direct activation of the AMP-activated protein kinase (AMPK). REDD1 likely acts on the TSC1/2 complex, as regulation of mTOR substrate phosphorylation by REDD1 requires TSC2 and is blocked by overexpression of the TSC1/2 downstream target Rheb but is not blocked by inhibition of AMPK. Tetracycline-inducible expression of REDD1 triggers rapid dephosphorylation of S6K and 4E-BP1 and significantly decreases cellular size. Conversely, inhibition of endogenous REDD1 by short interfering RNA increases cell size in a rapamycin-sensitive manner, and REDD1-/- cells are defective in cell growth regulation following ATP depletion. These results define REDD1 as a critical transducer of the cellular response to energy depletion through the TSC-mTOR pathway.  相似文献   

19.
The mechanistic target of rapamycin (mTOR) plays a central role in cellular growth and metabolism. mTOR forms two distinct protein complexes, mTORC1 and mTORC2. Much is known about the regulation and functions of mTORC1 due to availability of a natural compound, rapamycin, that inhibits this complex. Studies that define mTORC2 cellular functions and signaling have lagged behind. The development of pharmacological inhibitors that block mTOR kinase activity, and thereby inhibit both mTOR complexes, along with availability of mice with genetic knockouts in mTOR complex components have now provided new insights on mTORC2 function and regulation. Since prolonged effects of rapamycin can also disrupt mTORC2, it is worth re-evaluating the contribution of this less-studied mTOR complex in cancer, metabolic disorders and aging. In this review, we focus on recent developments on mammalian mTORC2 signaling mechanisms and its cellular and tissue-specific functions.  相似文献   

20.
The mechanistic target of rapamycin (mTOR) plays a central role in cellular growth and metabolism. mTOR forms two distinct protein complexes, mTORC1 and mTORC2. Much is known about the regulation and functions of mTORC1 due to availability of a natural compound, rapamycin, that inhibits this complex. Studies that define mTORC2 cellular functions and signaling have lagged behind. The development of pharmacological inhibitors that block mTOR kinase activity, and thereby inhibit both mTOR complexes, along with availability of mice with genetic knockouts in mTOR complex components have now provided new insights on mTORC2 function and regulation. Since prolonged effects of rapamycin can also disrupt mTORC2, it is worth re-evaluating the contribution of this less-studied mTOR complex in cancer, metabolic disorders and aging. In this review, we focus on recent developments on mammalian mTORC2 signaling mechanisms and its cellular and tissue-specific functions.Key words: mTOR, mTORC2, rictor, cancer, metabolism, ribosomes, protein synthesis, protein maturation, AGC kinases, growth factor signaling  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号