首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Among the various inhibitors known for enoyl-acyl carrier protein (ACP) reductases, triclosan and green tea catechins are two promising candidates. In the present study, we show, for the first time that epigallocatechin gallate (EGCG), a major component of green tea catechins, inhibits InhA, the enoyl-ACP reductase of Mycobacterium tuberculosis with an IC50 of 17.4 μM. EGCG interferes with the binding of NADH to InhA. We also demonstrate that EGCG increased the inhibitory activity of triclosan towards InhA and vice versa. Direct binding assay using [3H]EGCG and fluorescence titration assay support the spectrophotometric/kinetic inhibition data. The biochemical data has been explained by docking simulation studies.  相似文献   

2.
Growth of a bacterial consortium on triclosan   总被引:1,自引:0,他引:1  
  相似文献   

3.
三氯生(triclosan,TCS),化学名称2,4,4′ 三氯 2′ 羟基二苯醚,是一种羟二乙醚的三氯化衍生物。多年来,三氯生作为一种化学抑菌剂,在全球范围内被广泛应用于生活日用品中,如抑菌洗手液、牙膏及儿童玩具等。生活日用品或蓄积在水质、土壤及生物体中的三氯生及其代谢产物可被人体直接或间接地通过皮肤黏膜、呼吸道和消化道吸收。目前在全球各级生物体中均可检测出三氯生。而已有的动物和人体试验表明,三氯生可以破坏免疫系统,扰乱消化,破坏肠道菌群平衡,进而危害公众健康。本文综述了三氯生与肠道菌群及溃疡性结肠炎的相关性研究进展。  相似文献   

4.
The enoyl acyl carrier protein reductase (InhA) of Mycobacterium tuberculosis (MTB) is an attractive target for developing novel antitubercular agents. A series of gallic acid formazans, were computationally designed and docked into the active site of InhA to understand their binding mode and potential to inhibit InhA. Nine compounds from the designed series were identified as potential InhA inhibitors, on the basis of good Glide score. These compounds were synthesized in the laboratory and evaluated for in vitro antitubercular activity against drug-sensitive and multi-drug resistant strains of MTB. Out of nine compounds, three compounds exhibited the most promising MIC of <2 μM against the sensitive strain of MTB, H37Rv. The compounds were evaluated against five resistant strains of MTB. Most of the compounds exhibited activity superior to the standard, linezolid, against all these resistant strains. The mechanism of action of these compounds was concluded to be InhA inhibition, through InhA enzyme inhibition study. Insignificant cytotoxicity of these compounds was observed on RAW 264.7 cell line. Inactivity of all these compounds against gram positive and gram negative bacteria indicated their specificity against MTB. The compounds were further analyzed for ADME properties and showed potential as good oral drug candidates. The results clearly identified some novel, selective and specific InhA inhibitors against sensitive and resistant strains of MTB.  相似文献   

5.
We examined the acute effects of triclosan (TCS) exposure, a common antimicrobial found as a contaminant in the field, on survival and physiology of amphibian larvae. LC50 values were determined after 96 h for North American larval species: Acris crepitans blanchardii, Bufo woodhousii woodhousii, Rana sphenocephala, and for a developmental model: Xenopus laevis. Amphibian larvae were most sensitive to TCS exposure during early development based upon 96-h LC50 values. Heart rates for X. laevis and North American larvae exposed to TCS were variable throughout development. Metabolic rates of X. laevis and R. sphenocephala larvae exposed to TCS were significantly affected in larvae exposed to [50% LC50] and [LC50]. Tissue uptake and tissue bioconcentration factor (BCF) of TCS were investigated in X. laevis, B. woodhousii woodhousii, and R. sphenocephala. In general, a significant increase was observed as exposure concentration increased. Tissue BCF values were dependent upon stage and species. While TCS concentrations used here are higher than environmental concentrations, exposure to TCS was dependent upon species and developmental stage, with early developmental stages being most sensitive to TCS exposure.  相似文献   

6.
Enoyl reductase (ER) domains in module 5 of nystatin and amphotericin polyketide synthase (PKS) are responsible for reduction of the C28–C29 unsaturated bond on the nascent polyketide chain during biosynthesis of both macrolides, resulting in production of tetraenes nystatin A1 and amphotericin A, respectively. Data obtained in fermentations under glucose limitation conditions demonstrated that the efficiency of the ER5 domain can be influenced by carbon source availability in the amphotericin producer Streptomyces nodosus, but not in the nystatin producer Streptomyces noursei. Two S. noursei ER5 domain mutants were constructed, GG5073SP and S5016N, both producing the heptaene nystatin analogue S44HP with unsaturated C28–C29 bond. While the GG5073SP mutant, with altered ER5 NADPH binding site, produced S44HP exclusively, the S5016N mutant synthesized a mixture of nystatin and S44HP. Comparative studies on the S5016N S. noursei mutant and S. nodosus, both producing mixtures of tetraenes and heptaenes, revealed that the ratio between these two types of metabolites was significantly more affected by glucose limitation in S. nodosus. These data suggest that mutation S5016N in NysC “locks” the ER5 domain in a state of intermediate activity which, in contrast to the ER5 domain in the amphotericin PKS, is not significantly influenced by physiological conditions.  相似文献   

7.
Triclosan (2,4,4'-trichloro-2'-hydroxy-diphenyl ether; TCS) is an antibacterial agent incorporated in a wide variety of household and personal care products. Because of its partial elimination in sewage treatment plants, TCS is commonly detected in natural waters and sediments. Moreover, due to its high hydrophobicity, TCS accumulates in fatty tissues in various aquatic organisms. TCS can be converted into methyl-triclosan (2,4,4'-trichloro-2'-methoxydiphenyl ether; MTCS) after biological methylation. In this study, the acute cytotoxicity of TCS and MTCS in short-term in vitro experiments was assessed on cell cultures from the European abalone Haliotis tuberculata. The results showed that morphology and density of hemocyte are affected from a concentration of 8 μM TCS. Using the XTT reduction assay, TCS has been demonstrated to decrease hemocyte metabolism activity in a dose- and time-dependent exposure. The IC(50) was evaluated at 6 μM for both hemocyte and gill cells after a 24 h-incubation with TCS. A significant cytotoxicity of MTCS was also observed from 4 μM in 24 h-old hemocyte culture. Our results reveal a toxic effect of TCS and MTCS on immune (hemocytes) and/or respiratory cells (gill cells) of the abalone, species living in coastal waters areas and exposed to anthropogenic pollution.  相似文献   

8.
BACKGROUND: Triclosan (TCS) exposure of Escherichia coli selects for tolerant clones, mutated in their enoyl-acyl carrier protein reductase (FabI). It has been inferred that this phenomenon is widespread amongst bacterial genera and might be associated with resistance to third party agents. METHODS: Ex-situ, low passage isolates of enteric, human axilla, human oral origin and bacteria isolated from a domestic drain, together with selected type cultures were exposed to escalating concentrations of TCS over 10 passages using a gradient plate technique. One fresh faecal isolate of E. coli was included as a positive control. TCS susceptibility was determined for all strains before and after exposure, whilst enteric isolates were additionally assessed for susceptibility towards chlorhexidine, tetracycline, chloramphenicol, nalidixic acid and ciprofloxacin, and the oral isolates towards chlorhexidine, tetracycline and metronidazole. RESULTS: Triclosan exposure of E. coli markedly decreased TCS susceptibility. TCS susceptibility also decreased for Klebsiella oxytoca, Aranicola proteolyticus and Stenotrophomonas maltophilia. Susceptibility of the remaining 35 strains to TCS and the other test agents remained unchanged. CONCLUSIONS: These data suggest that selection for high level resistance by TCS exposure is not widespread and appears to be confined to certain enteric bacteria, especially E. coli. Change in TCS susceptibility did not affect susceptibility towards chemically unrelated antimicrobials. SIGNIFICANCE AND IMPACT: Acquired high-level TCS resistance is not a widespread phenomenon.  相似文献   

9.
In this study, we have evaluated the effect of palladium-iron bimetallic nanoparticles (nFe-Pd) on diphenyl ether (DE) degrading bacterial strain Sphingomonas sp. PH-07 as well as a sequential nano-bio hybrid process with nFe-Pd as catalytic reductant and PH-07 as biocatalyst for degradation of triclosan. Strain PH-07 grew well in the presence of nFe-Pd up to 0.1 g/L in minimal salts medium with DE as carbon source. In aqueous system, TCS (17.3 μM) was completely dechlorinated within 2 h by nFe-Pd (0.1 g/L) with concomitant release of 2-phenoxyphenol (16.8 μM) and chloride ions (46 μM). All possible dichloro- and monochloro-2-phenoxyphenol intermediates were identified by HPLC and GC-MS analyses, and the dechlorination pathway was proposed. Addition of PH-07 cells into the reactor effectively degraded the 2-phenoxyphenol. Our results reveal that strain PH-07 survives well in the presence of nFe-Pd and nFe-Pd/PH-07 hybrid treatment could be a potential strategy for degradation of TCS.  相似文献   

10.
Epigallocatechin gallate (EGCG) is known to have numerous pharmacological properties. In the present study, we have shown that EGCG inhibits enoyl-acyl carrier protein reductase of Plasmodium falciparum (PfENR) by following a two-step, slow, tight-binding inhibition mechanism. The association/isomerization rate constant (k5) of the reversible and loose PfENR-EGCG binary complex to a tight [PfENR-EGCG] or EI complex was calculated to be 4.0 × 10−2 s−1. The low dissociation rate constant (k6) of the [PfENR-EGCG] complex confirms the tight-binding nature of EGCG. EGCG inhibited PfENR with the overall inhibition constant (Ki) of 7.0 ± 0.8 nM. Further, we also studied the effect of triclosan on the inhibitory activity of EGCG. Triclosan lowered the k6 of the EI∗ complex by 100 times, lowering the overall Ki of EGCG to 97.5 ± 12.5 pM. The results support EGCG as a promising candidate for the development of tea catechin based antimalarial drugs.  相似文献   

11.
Plasmodium vivax merozoite preferentially invades reticulocytes probably using PvRBP-1 as ligand. One hundred and ninety-five, 15-mer peptides has been synthesised from PvRBP-1 sequence; tested in reticulocyte- or erythrocyte-binding assays. Twenty-five peptides (Kd=76–380 nM) specifically defined four reticulocyte-binding regions. It has been reported that a highly conserved Region-I recombinant fragment binds specifically to reticulocytes. HABP-critical residues for reticulocyte-binding were highly conserved in 20 Colombian P. vivax clinical isolates, suggesting an important biological function. There were six overlapping reticulocyte-binding sites for these peptides according to enzyme sensitivity and mutual competition-binding assays; located on 26- and 41-kDa reticulocyte membrane surface proteins.  相似文献   

12.
The crystal structure of the Escherichia coli enoyl reductase-NAD+-triclosan complex has been determined at 2.5 A resolution. The Ile192-Ser198 loop is either disordered or in an open conformation in the previously reported structures of the enzyme. This loop adopts a closed conformation in our structure, forming van der Waals interactions with the inhibitor and hydrogen bonds with the bound NAD+ cofactor. The opening and closing of this flipping loop is likely an important factor in substrate or ligand recognition. The closed conformation of the loop appears to be a critical feature for the enhanced binding potency of triclosan, and a key component in future structure-based inhibitor design.  相似文献   

13.
A facile strategy for the annulation of 2,6-dicyanoaniline moiety to steroidal A/B-ring is described from base catalyzed and microwave-promoted reaction of steroidal 3-keto-2-hydroxymethylenes with malononitrile in high yields. The generality of the reaction has been extended to non-steroidal cyclic and aliphatic ketohydroxylmethylenes.  相似文献   

14.
15.
Protein assemblies with a high degree of repetitiveness and organization are known to induce strong immune responses. For that reason they have been postulated for the design of subunit vaccines by means of protein engineering. The enzyme lumazine synthase from Brucella spp. (BLS) is highly immunogenic, presumably owing to its homodecameric arrangement and remarkable thermodynamic stability. Structural analysis has shown that it is possible to insert foreign peptides at the ten amino terminus of BLS without disrupting its general folding. These peptides would be displayed to the immune system in a highly symmetric three-dimensional array. In the present work, BLS has been used as a protein carrier of foreign peptides. We have established a modular system to produce chimeric proteins decorated with ten copies of a desired peptide as long as 27 residues and have shown that their folding and stability is similar to that of the wild-type protein. The knowledge about the mechanisms of dissociation and unfolding of BLS allowed the engineering of polyvalent chimeras displaying different predefined peptides on the same molecular scaffold. Moreover, the reassembly of mixtures of chimeras at different steps of the unfolding process was used to control the stoichiometry and spatial arrangement for the simultaneous display of different peptides on BLS. This strategy would be useful for vaccine development and other biomedical applications.  相似文献   

16.
The acyltransferase components (E2) from the family of 2-oxo acid dehydrogenase multienzyme complexes form large protein scaffolds, to which multiple copies of peripheral enzymes bind tightly but non-covalently. Sixty copies of the E2 polypeptide from the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus assemble to form a pentagonal dodecahedral scaffold with icosahedral symmetry. This protein scaffold can be modified to present foreign peptides and proteins on its surface. We show that it is possible to display two epitopes (MAL1 and MAL2) from the circumsporozoite CS proteins of Plasmodium falciparum and Plasmodium berghei, respectively, and a green fluorescent protein (EGFP), on the E2 surface. Immunization with an E2 scaffold displaying the MAL1 epitope elicited MAL1-specific antibodies in rabbits. EGFP (25 kDa) displayed as an N-terminal fusion in each of the 60 copies of the E2 chain folded into its active form, as judged by its fluorescence and detection in localized foci in Escherichia coli cells in vivo. Simultaneous display of a hexahistidine affinity tag, the MAL1 epitope and the green fluorescent protein, all on the same E2 scaffold, could be achieved by reversible denaturation and reassembly of mixtures of appropriately modified E2 chains. This new methodology offers several important advantages over other current display technologies, not least in the size of insert that can be accommodated and the multiplicity of display that can be achieved.  相似文献   

17.
Activity of the pterin- and folate-salvaging enzymes pteridine reductase 1 (PTR1) and dihydrofolate reductase-thymidylate synthetase (DHFR-TS) is commonly measured as a decrease in absorbance at 340 nm, corresponding to oxidation of nicotinamide adenine dinucleotide phosphate (NADPH). Although this assay has been adequate to study the biology of these enzymes, it is not amenable to support any degree of routine inhibitor assessment because its restricted linearity is incompatible with enhanced throughput microtiter plate screening. In this article, we report the development and validation of a nonenzymatically coupled screening assay in which the product of the enzymatic reaction reduces cytochrome c, causing an increase in absorbance at 550 nm. We demonstrate this assay to be robust and accurate, and we describe its utility in supporting a structure-based design, small-molecule inhibitor campaign against Trypanosoma brucei PTR1 and DHFR-TS.  相似文献   

18.
This study is an attempt to develop a simple search method for lead peptide candidates, which include constrained structures in a recognized sequence, using the design of a competitive inhibitor for HMG-CoA reductase (HMGR). A structure-functional analysis of previously synthesized peptides proposes that a competitive inhibitory peptide can be designed by maintaining bioactive conformation in a recognized sequence. A conformational aspect of the structure-based approach was applied to the peptide design. By analysis of the projections obtained through a principle component analysis (PCA) for short linear and cyclic peptides, a head-to-tail peptide cycle is considered as a model for its linear analogy. It is proposed that activities of the linear peptides based on an identical amino acid sequence, which are obtained from a less flexible peptide cycle, would be relatively higher than those obtained from more flexible cyclic peptides. The design criterion was formulated in terms of a 'V' parameter, reflecting a relative deviation of an individual peptide cycle from an average statistical peptide cycle based on all optimized structures of the cyclic peptides in set. Twelve peptide cycles were selected for the peptide library. Comparing the calculated 'V' parameters, two cyclic peptides (GLPTGG and GFPTGG) were selected as lead cycles from the library. Based on these sequences, six linear peptides obtained by breaking the cycle at different positions were selected as lead peptide candidates. The linear GFPTGG peptide, showing the highest inhibitory activity against HMGR, increases the inhibitory potency nearly tenfold. Kinetic analysis reveals that the GFPTGG peptide is a competitive inhibitor of HMG-CoA with an equilibrium constant of inhibitor binding (K(i)) of 6.4 +/- 0.3 microM. Conformational data support a conformation of the designed peptides close to the bioactive conformation of the previously synthesized active peptides.  相似文献   

19.
The invasive stages of Apicomplexa parasites, called zoites, have been largely studied in in vitro systems, with a special emphasis on their unique gliding and host cell invasive capacities. In contrast, the means by which these parasites reach their destination in their hosts are still poorly understood. We summarize here our current understanding of the cellular basis of in vivo parasitism by two well-studied Apicomplexa zoites, the Toxoplasma tachyzoite and the Plasmodium sporozoite. Despite being close relatives, these two zoites use different strategies to reach their goal and establish infection.  相似文献   

20.
In a genetic screen for Kinesin heavy chain (Khc)-interacting proteins, we identified APLIP1, a neuronally expressed Drosophila homolog of JIP-1, a JNK scaffolding protein . JIP-1 and its homologs have been proposed to act as physical linkers between kinesin-1, which is a plus-end-directed microtubule motor, and certain anterograde vesicles in the axons of cultured neurons . Mutation of Aplip1 caused larval paralysis, axonal swellings, and reduced levels of both anterograde and retrograde vesicle transport, similar to the effects of kinesin-1 inhibition. In contrast, Aplip1 mutation caused a decrease only in retrograde transport of mitochondria, suggesting inhibition of the minus-end microtubule motor cytoplasmic dynein . Consistent with dynein defects, combining heterozygous mutations in Aplip1 and Dynein heavy chain (Dhc64C) generated synthetic axonal transport phenotypes. Thus, APLIP1 may be an important part of motor-cargo linkage complexes for both kinesin-1 and dynein. However, it is also worth considering that APLIP1 and its associated JNK signaling proteins could serve as an important signaling module for regulating transport by the two opposing motors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号