首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The helix-sense inversions of poly(β-phenethyl l -aspartate) (2P) and diblock copolymers (2P-3P), with 2P and poly(β-phenylpropyl l -aspartate) (3P) blocks, were studied in their solid states using synchrotron wide-angle X-ray diffraction and small-angle X-ray scattering. The characteristic parameters of the π-helix structure of 2P were directly determined in situ after the helix transition at a high temperature. In the 2P-3P block copolymers, the main chains of the 3P blocks initially convert from right- to left-handed α-helices, and then the 2P blocks convert irreversibly from right-handed α-helices to left-handed π-helices. The chemical structures of the side chains of poly(l -aspartic acid ester)s significantly affect their helix transition behaviors.  相似文献   

2.
The melting transition of DNA–ligand complexes, allowing for two binding mechanisms to different DNA conformations is treated theoretically. The obtained results express the behavior of the experimentally measurable quantities, degree of denaturation, and concentrations of bound ligands on the temperature. The range of binding parameters is obtained, where denaturation curves become multiphasic. The possible application to the nanocomposites crystallization is discussed.  相似文献   

3.
The 3(10)-helix is characterized by having at least two consecutive hydrogen bonds between the main-chain carbonyl oxygen of residue i and the main-chain amide hydrogen of residue i + 3. The helical parameters--pitch, residues per turn, radius, and root mean square deviation (rmsd) from the best-fit helix--were determined by using the HELFIT program. All 3(10)-helices were classified as regular or irregular based on rmsd/(N - 1)1/2 where N is the helix length. For both there are systematic, position-specific shifts in the backbone dihedral angles. The average phi, psi shift systematically from approximately -58 degrees, approximately -32 degrees to approximately -90 degrees, approximately -4 degrees for helices 5, 6, and 7 residues long. The same general pattern is seen for helices, N = 8 and 9; however, in N = 9, the trend is repeated with residues 6, 7, and 8 approximately repeating the phi, psi of residues 2, 3, and 4. The residues per turn and radius of regular 3(10)-helices decrease with increasing length of helix, while the helix pitch and rise per residue increase. That is, regular 3(10)-helices become thinner and longer as N increases from 5 to 8. The fraction of regular 3(10)-helices decreases linearly with helix length. All longer helices, N > or = 9 are irregular. Energy minimizations show that regular helices become less stable with increasing helix length. These findings indicate that the definition of 3(10)-helices in terms of average, uniform dihedral angles is not appropriate and that it is inherently unstable for a polypeptide to form an extended, regular 3(10)-helix. The 3(10)-helices observed in proteins are better referred to parahelices.  相似文献   

4.
Helix kinks are a common feature of α‐helical membrane proteins, but are thought to be rare in soluble proteins. In this study we find that kinks are a feature of long α‐helices in both soluble and membrane proteins, rather than just transmembrane α‐helices. The apparent rarity of kinks in soluble proteins is due to the relative infrequency of long helices (≥20 residues) in these proteins. We compare length‐matched sets of soluble and membrane helices, and find that the frequency of kinks, the role of Proline, the patterns of other amino acid around kinks (allowing for the expected differences in amino acid distributions between the two types of protein), and the effects of hydrogen bonds are the same for the two types of helices. In both types of protein, helices that contain Proline in the second and subsequent turns are very frequently kinked. However, there are a sizeable proportion of kinked helices that do not contain a Proline in either their sequence or sequence homolog. Moreover, we observe that in soluble proteins, kinked helices have a structural preference in that they typically point into the solvent. Proteins 2014; 82:1960–1970. © 2014 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.  相似文献   

5.
A single aspartate residue has been placed at various positions in individual peptides for which the alanine-based reference peptide is electrically neutral, and the helix contents of the peptides have been measured by circular dichroism. The dependence of peptide helix content on aspartate position has been used to determine the helix propensity (s-value). Both the charged (Asp-) and uncharged (Asp0) forms of the aspartate residue are strong helix breakers and have identical s-values of 0.29 at 0 degree C. The interaction of Asp- with the helix dipole affects helix stability at positions throughout the helix, not only near the N-terminus, where the interaction is helix stabilizing, and the C-terminus, where it is destabilizing. Comparison of the helix contents at acidic pH (Asp0) and at neutral pH (Asp-) shows that the charge-helix dipole interaction is screened slowly with increasing NaCl concentration, and screening is not complete even at 4.8 M NaCl. Lastly, a helix-stabilizing hydrogen-bond interaction between glutamine and aspartate (spacing i, i + 4) has been found. This side-chain interaction is specific for both the orientation and spacing of the glutamine and aspartate residues and is resistant to screening by NaCl.  相似文献   

6.
Abstract

The high affinity IgE receptor, possesses a tetrameric structure. The 243 residue β subunit is a polytopic protein with four hydrophobic membrane-spanning segments, whereas the individual α and γ subunits are bitopic proteins each containing one transmembrane domain in their monomeric form. In the proposed topographical model (Blank et al., 1989), the four trans-membrane α helices of the β subunit are connected by three loop sequences.

To study the individual subunits and intact receptor, this membrane protein was divided into domains such as its loop peptides, cytoplasmic peptides and transmembrane helices according to Blank et al., 1989. The 3D structure of the synthesized loop peptides and cytoplasmic peptides were calculated; CD and/or NMR data were used as appropriate to generate the resultant structures which were then used as data basis for the higher level calculations.

The four individual transmembrane helices of the β subunit were characterised, first of all, by mapping the relative lipophilicity of their surfaces using lipophilic probes. A second procedure, docking of the individual helices in pairs, was used to predict helix–helix interactions.

The data on the relative lipophilicity of the surfaces as well as the surfaces that favoured helix–helix interactions were used in combination with the spectroscopy-based structures of the loops and cytoplasmic domains to calculate via molecular dynamics, the helix arrangement and 3D structure of the β subunit of the high affinity IgE receptor. In the final analysis, the molecular simulations yielded two structures of the β subunit, which should form a basis for the modelling of the whole high affinity IgE receptor.  相似文献   

7.
The natural amino acids are primarily helix breakers at the low assignment temperatures characteristic of many studies, but recent genomic analyses of thermophilic proteins suggest that at high temperatures, some breakers may become strong helix formers. Moreover, the breaker/former inventory has not been previously characterized at the physiologically relevant temperature of 37°C. The versatility of 13C?O NMR chemical shifts as helicity reporters allows construction of two mutant peptide series, tailored to expand the range of temperature assignments for helical propensities and derived from the core hosts tL‐Ala9XxxAla9tL and tL‐AlaNva4XxxNva4Ala9tL, Nva = norvaline. For three limiting guests Xxx, the helix former Nva and the breakers Gly and Pro, we report wXxx[T] assignments at seven temperatures from 2 to 80°C, validating our reasoning and paving the way for assignment of a definitive wXxx[T] data‐base. © 2008 Wiley Periodicals, Inc. Biopolymers 91: 311–320, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

8.
9.
10.
Helix propensities of the amino acids have been measured in alanine-based peptides in the absence of helix-stabilizing side-chain interactions. Fifty-eight peptides have been studied. A modified form of the Lifson-Roig theory for the helix-coil transition, which includes helix capping (Doig AJ, Chakrabartty A, Klingler TM, Baldwin RL, 1994, Biochemistry 33:3396-3403), was used to analyze the results. Substitutions were made at various positions of homologous helical peptides. Helix-capping interactions were found to contribute to helix stability, even when the substitution site was not at the end of the peptide. Analysis of our data with the original Lifson-Roig theory, which neglects capping effects, does not produce as good a fit to the experimental data as does analysis with the modified Lifson-Roig theory. At 0 degrees C, Ala is a strong helix former, Leu and Arg are helix-indifferent, and all other amino acids are helix breakers of varying severity. Because Ala has a small side chain that cannot interact significantly with other side chains, helix formation by Ala is stabilized predominantly by the backbone ("peptide H-bonds"). The implication for protein folding is that formation of peptide H-bonds can largely offset the unfavorable entropy change caused by fixing the peptide backbone. The helix propensities of most amino acids oppose folding; consequently, the majority of isolated helices derived from proteins are unstable, unless specific side-chain interactions stabilize them.  相似文献   

11.
A number of nuclear encoded proteins are imported in to the intermembrane space of mitochondria where they adopt a coiled coil-helix-coiled coil-helix (CHCH) fold. Two disulfide bonds formed by twin CX3C or CX9C motifs stabilize this fold. Some of these proteins are also characterized at their N-termini by the presence of two additional cysteine residues which can perform oxidoreductase or metallochaperone functions or both. This fold represents the most ‘minimal’ oxidoreductase domain described so far.  相似文献   

12.
In this work, we report the ab initio folding of three different extended helical peptides namely 2khk, N36, and C34 through conventional molecular dynamics simulation at room temperature using implicit solvation model. Employing adaptive hydrogen bond specific charge (AHBC) scheme to account for the polarization effect of hydrogen bonds established during the simulation, the effective folding of the three extended helices were observed with best backbone RMSDs in comparison to the experimental structures over the helical region determined to be 1.30 Å for 2khk, 0.73 Å for N36 and 0.72 Å for C34. In this study, 2khk will be used as a benchmark case serving as a means to compare the ability of polarized (AHBC) and nonpolarized force field in the folding of an extended helix. Analyses conducted revealed the ability of the AHBC scheme in effectively folding the extended helix by promoting helix growth through the stabilization of backbone hydrogen bonds upon formation during the folding process. Similar observations were also noted when AHBC scheme was employed during the folding of C34 and N36. However, under Amber03 force field, helical structures formed during the folding of 2khk was not accompanied by stabilization thus highlighting the importance of electrostatic polarization in the folding of helical structures. Proteins 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

13.
Six helix surface positions of protein G (Gbeta1) were redesigned using a computational protein design algorithm, resulting in the five fold mutant Gbeta1m2. Gbeta1m2 is well folded with a circular dichroism spectrum nearly identical to that of Gbeta1, and a melting temperature of 91 degrees C, approximately 6 degrees C higher than that of Gbeta1. The crystal structure of Gbeta1m2 was solved to 2.0 A resolution by molecular replacement. The absence of hydrogen bond or salt bridge interactions between the designed residues in Gbeta1m2 suggests that the increased stability of Gbeta1m2 is due to increased helix propensity and more favorable helix dipole interactions.  相似文献   

14.
Integral membrane proteins often contain proline residues in their alpha-helical transmembrane (TM) fragments, which may strongly influence their folding and association. Pro-scanning mutagenesis of the helical domain of glycophorin A (GpA) showed that replacement of the residues located at the center abrogates helix packing while substitution of the residues forming the ending helical turns allows dimer formation. Synthetic TM peptides revealed that a point mutation of one of the residues of the dimerization motif (L75P) located at the N-terminal helical turn of the GpA TM fragment, adopts a secondary structure and oligomeric state similar to the wild-type sequence in detergents. In addition, both glycosylation mapping in biological membranes and molecular dynamics showed that the presence of a proline residue at the lipid/water interface has as an effect the extension of the helical end. Thus, helix packing can be an important factor that determines appearance of proline in TM helices. Membrane proteins might accumulate proline residues at the two ends of their TM segments in order to modulate the exposition of key amino acid residues at the interface for molecular recognition events while allowing stable association and native folding.  相似文献   

15.
The amino acid Aib predisposes a peptide to be helical with context‐dependent preference for either 310‐ or α‐ or a mixed helical conformation. Short peptides also show an inherent tendency to be unfolded. To characterize helical and unfolded states adopted by water‐soluble Aib‐containing peptides, the conformational preference of Ac‐Ala‐Aib‐Ala‐Lys‐Ala‐Aib‐Lys‐Ala‐Lys‐Ala‐Aib‐Tyr‐NH2 was determined by CD, NMR and MD simulations as a function of temperature. Temperature‐dependent CD data indicated the contribution of two major components, each an admixture of helical and extended/polyproline II structures. Both right‐ and left‐handed helical conformations were detected from deconvolution of CD data and 13C NMR experiments. The presence of a helical backbone, more pronounced at the N‐terminal, and a temperature‐induced shift in α‐helix/310‐helix equilibrium, more pronounced at the C‐terminal, emerged from NMR data. Starting from polyproline II, the N‐terminal of the peptide folded into a helical backbone in MD simulations within 5 ns at 60°C. Longer simulations showed a mixed‐helical backbone to be stable over the entire peptide at 5°C while at 60°C the mixed‐helix was either stable at the N‐terminus or occurred in short stretches through out the peptide, along with a significant population of polyproline II. Our results point towards conformational heterogeneity of water‐soluble Aib‐based peptide helices and the associated subtleties. The problem of analyzing CD and NMR data of both left‐ and right‐handed helices are discussed, especially the validity of the ellipticity ratio [θ]222/[θ]207, as a reporter of α‐/310‐ population ratio, in right‐ and left‐handed helical mixtures. Proteins 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

16.
James A. Birrell 《FEBS letters》2010,584(19):4247-4252
Three of the conserved, membrane-bound subunits in NADH:ubiquinone oxidoreductase (complex I) are related to one another, and to Mrp sodium-proton antiporters. Recent structural analysis of two prokaryotic complexes I revealed that the three subunits each contain fourteen transmembrane helices that overlay in structural alignments: the translocation of three protons may be coordinated by a lateral helix connecting them together (Efremov, R.G., Baradaran, R. and Sazanov, L.A. (2010). The architecture of respiratory complex I. Nature 465, 441-447). Here, we show that in higher metazoans the threefold symmetry is broken by the loss of three helices from subunit ND2; possible implications for the mechanism of proton translocation are discussed.  相似文献   

17.
Koch O  Cole J 《Proteins》2011,79(5):1416-1426
A new automated helix assignment method is presented that leads to a more consistent definition of the helix termini, especially of the helix C-terminus. The method assigns a helix to segments of protein chain where adjacent helical turn structures are observed, capped by specific distorted turn types (e.g., open helical turns without a hydrogen bond) or capping motifs (e.g., the Schellman motif). Helix termini are detected by observing the behavior of the NH group in N-termini and the CO group in C-termini; in each case, the respective group must be free to interact with hydrogen bonding partners outside of the putative helix for a helix terminus to be assigned. The presented assignment method and SHAFT-assigned helices are part of Secbase and are made available with Relibase+ 3.0 and the free web version of Relibase 3.0. The method can also be used for the helix assignments of additional protein structures.  相似文献   

18.
Tubulin/FtsZ-like GTPase TubZ is responsible for maintaining the stability of pXO1-like plasmids in virulent Bacilli. TubZ forms a filament in a GTP-dependent manner, and like other partitioning systems of low-copy-number plasmids, it requires the centromere-binding protein TubR that connects the plasmid to the TubZ filament. Systems regulating TubZ partitioning have been identified in Clostridium prophages as well as virulent Bacillus species, in which TubZ facilitates partitioning by binding and towing the segrosome: the nucleoprotein complex composed of TubR and the centromere. However, the molecular mechanisms of segrosome assembly and the transient on–off interactions between the segrosome and the TubZ filament remain poorly understood. Here, we determined the crystal structure of TubR from Bacillus cereus at 2.0-Å resolution and investigated the DNA-binding ability of TubR using hydroxyl radical footprinting and electrophoretic mobility shift assays. The TubR dimer possesses 2-fold symmetry and binds to a 15-bp palindromic consensus sequence in the tubRZ promoter region. Continuous TubR-binding sites overlap each other, which enables efficient binding of TubR in a cooperative manner. Interestingly, the segrosome adopts an extended DNA–protein filament structure and likely gains conformational flexibility by introducing non-consensus residues into the palindromes in an asymmetric manner. Together, our experimental results and structural model indicate that the unique centromere recognition mechanism of TubR allows transient complex formation between the segrosome and the dynamic polymer of TubZ.  相似文献   

19.
20.
The DNA-binding helix pairs in gene repressor and activator proteins were compared with other approximately perpendicular pairs of adjacent helices in the known protein structures. Two other examples of closely matching conformations were found in cytochrome c peroxidase (residues 153-174) and in ribosomal L7/L12 protein (residues 68-89). Another group of such offset "lap-joints" are the Ca-binding "EF hand" structures, which bind a positive rather than a negative ligand. The EF hands turn out to match the DNA-binding motifs quite well (outside of the loop) if their sequence direction is reversed. This conformation is thus not as unusual as had been thought, but may have a more generalized role in ion binding and occasionally occur in a purely structural role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号