首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anti-idiotypic monoclonal antibodies have been prepared that represent the internal image of nicotine and are specific for the nicotine binding site on rat brain receptor. Specificity of these antibodies for the combining site on anti-nicotine was demonstrated by their ability to inhibit binding of monoclonal anti-nicotine to immobilized nicotine-polylysine. Furthermore, purified rat brain nicotine receptor but not acetylcholine receptor from fish electric organ effectively competed with anti-nicotine for immobilized nicotine and for immobilized anti-idiotype. Only 9 pmoles of naturally occurring (-)-nicotine inhibited idiotype-anti-idiotype binding by 50% whereas 11 times more (+)-nicotine was required. Acetylcholine, several cholinergic agonists and antagonists, nicotine metabolites, and other structurally related compounds were poor inhibitors.  相似文献   

2.
Tobacco addiction represents one of the largest public health problems in the world and is the leading cause of cancer and heart disease, resulting in millions of deaths a year. Vaccines for smoking cessation have shown considerable promise in preclinical models, although functional antibody responses induced in humans are only modestly effective in preventing nicotine entry into the brain. The challenge in generating serum antibodies with a large nicotine binding capacity is made difficult by the fact that this drug is non-immunogenic and must be conjugated as a hapten to a protein carrier. To circumvent the limitations of traditional carriers like keyhole limpet hemocyanin (KLH), we have synthesized a short trimeric coiled-coil peptide (TCC) that creates a series of B and T cell epitopes with uniform stoichiometry and high density. Here we compared the relative activities of a TCC-nic vaccine and two control KLH-nic vaccines using Alum as an adjuvant or GLA-SE, which contains a synthetic TLR4 agonist formulated in a stable oil-in-water emulsion. The results showed that the TCC''s high hapten density correlated with a better immune response in mice as measured by anti-nicotine Ab titer, affinity, and specificity, and was responsible for a reduction in anti-carrier immunogenicity. The Ab responses achieved with this synthetic vaccine resulted in a nicotine binding capacity in serum that could prevent >90% of a nicotine dose equivalent to three smoked cigarettes (0.05 mg/kg) from reaching the brain.  相似文献   

3.
Anti-nicotine vaccines may aid smoking cessation via the induction of anti-nicotine antibodies (Ab) which reduce nicotine entering the brain, and hence the associated reward. Ab function depends on both the quantity (titer) and the quality (affinity) of the Ab. Anti-nicotine vaccines tested previously in clinical studies had poor efficacy despite high Ab titer, and this may be due to inadequate function if Ab of low affinity were induced. In this study, we designed and synthesized a series of novel nicotine-like haptens which were all linked to diphtheria toxoid (DT) as carrier, but which differed in the site of attachment of linker to nicotine, the nature of linker used, and the handle used to attach the hapten to DT. The resulting hapten conjugates were evaluated in a mouse model, using CpG (a TLR9 agonist) and aluminum hydroxide (Al(OH)3) as adjuvants, whereby Ab titers, affinity and function were evaluated using a radiolabeled nicotine challenge model. A series of additional linkers varying in length, rigidity and polarity were used with a single hapten to generate additional DT-conjugates, which were also tested in mice. Conjugates made with different haptens resulted in various titers of anti-nicotine Ab. Several haptens gave similarly high Ab titers, but among these, Ab affinity and hence function varied considerably. Linker also influenced Ab titer, affinity and function. These results demonstrate that immune responses induced in mice by nicotine-conjugate antigens are greatly influenced by hapten design including site of attachment of linker to nicotine, the nature of linker used, and the handle used to attach the hapten to DT. While both Ab titer and affinity contributed to function, affinity was more sensitive to antigen differences.  相似文献   

4.
Preparation and characterization of two nicotine-albumin conjugates, N-Succinyl-6-amino-DL-nicotine-BSA and 6-(Σ-aminocapramido)-DL-nicotine-BSA are described. Ten and eleven molecules of nicotine per molecule of BSA were found, respectively. Two different animal species were used to produce anti-nicotine antibodies. Goats inoculated with 6-(Σ-aminocapramido)-DL-amino nicotine conjugate produced antibodies with higher titer and better affinity and specificity. Comparative studies of antibody production, purification, solid phase assays in controlled pore glass, titration and specificity are also reported.  相似文献   

5.
Despite the enormous health risks, people continue to smoke and use tobacco primarily as a result of nicotine addiction. As part of our immunopharmacotherapy research, the effects of active and passive immunizations on acute nicotine-induced locomotor activity in rats were investigated. To this end, rats were immunized with either a NIC-KLH immunoconjugate vaccine designed to elicit an antinicotine immune response, or were administered an antinicotine monoclonal antibody, NIC9D9, prior to a series of nicotine challenges and testing sessions. Vaccinated rats showed a 45% decrease in locomotor activity compared to a 16% decrease in controls. Passive immunization with NIC9D9 resulted in a 66.9% decrease in locomotor activity versus a 3.4% decrease in controls. Consistent with the behavioral data, much less nicotine was found in the brains of immunized rats. The results support the potential clinical value of immunopharmacotherapy for nicotine addiction in the context of tobacco cessation programs.  相似文献   

6.
Structurally distinct nicotine immunogens can elicit independent antibody responses against nicotine when administered concurrently. Co-administering different nicotine immunogens together as a multivalent vaccine could be a useful way to generate higher antibody levels than with monovalent vaccines alone. The immunogenicity and additivity of monovalent and bivalent nicotine vaccines was studied across a range of immunogen doses, adjuvants, and routes to assess the generality of this approach. Rats were vaccinated with total immunogen doses of 12.5 - 100 μg of 3′-aminomethyl nicotine conjugated to recombinant Pseudomonas exoprotein A (3′-AmNic-rEPA), 6-carboxymethylureido nicotine conjugated to keyhole limpet hemocyanin (6-CMUNic-KLH), or both. Vaccines were administered s.c. in alum or i.p. in Freund’s adjuvant at matched total immunogen doses. When administered s.c. in alum, the contributions of the individual immunogens to total nicotine-specific antibody (NicAb) titers and concentrations were preserved across a range of doses. Antibody affinity for nicotine varied greatly among individuals but was similar for monovalent and bivalent vaccines. However when administered i.p. in Freund’s adjuvant the contributions of the individual immunogens to total NicAb titers and concentrations were compromised at some doses. These results support the possibility of co-administering structurally distinct nicotine immunogens to achieve a more robust immune response than can be obtained with monovalent immunogens alone. Choice of adjuvant was important for the preservation of immunogen component activity.  相似文献   

7.
Nicotine exposure during gestation is associated with a higher risk of adverse behavioral outcomes including a heightened liability for dependency to drugs of abuse, which can exhibit drug‐specificity influenced by gender. This enhanced liability suggests that nicotine use during pregnancy alters neural development in circuits involved in motivation and reward‐based learning. The ventral tegmental area (VTA) is critical in motivated behaviors and we hypothesized that gestational exposure to nicotine alters the development of excitatory circuits in this nucleus. Accordingly, in VTA brain slices from male and female mice exposed to nicotine during the prenatal period (PNE) and controls, we compared cellular rises in calcium induced by AMPA receptor and nicotinic acetylcholine receptor (nAChR) stimulation by use of the ratiometric calcium binding dye, Fura‐2AM. We found that AMPA induced smaller amplitude calcium rises in the PNE VTA, which was an effect only detected in males. Further, while the amplitude did not vary between treatment and control in females, a greater number of cells responded with rises in calcium in the PNE. Conversely, the proportions of cells responding with calcium rises induced by nAChR stimulation did not change in either gender according to treatment. However, larger rises in calcium in PNE females were detected. When taken together our data show that excitatory signaling in the VTA is altered in a gender‐specific manner by PNE and suggest that alterations in signaling could play a role in drug‐specific differences in maladaptive, motivated behaviors exhibited by males and females born to mothers exposed to nicotine during pregnancy. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 2018  相似文献   

8.
Nicotine is the principal addictive component of tobacco. Blocking its passage from the lung to the brain with nicotine-specific antibodies is a promising approach for the treatment of smoking addiction. We have determined the crystal structure of nicotine bound to the Fab fragment of a fully human monoclonal antibody (mAb) at 1.85 Å resolution. Nicotine is almost completely (> 99%) buried in the interface between the variable domains of heavy and light chains. The high affinity of the mAb is the result of a charge–charge interaction, a hydrogen bond, and several hydrophobic contacts. Additionally, similarly to nicotinic acetylcholine receptors in the brain, two cation–π interactions are present between the pyrrolidine charge and nearby aromatic side chains. The selectivity of the mAb for nicotine versus cotinine, which is the major metabolite of nicotine and differs in only one oxygen atom, is caused by steric constraints in the binding site. The mAb was isolated from B cells of an individual immunized with a nicotine–carrier protein conjugate vaccine. Surprisingly, the nicotine was bound to the Fab fragment in an orientation that was not compatible with binding to the nicotine–carrier protein conjugate. The structure of the Fab fragment in complex with the nicotine–linker derivative that was used for the production of the conjugate vaccine revealed a similar position of the pyridine ring of the nicotine moiety, but the pyrrolidine ring was rotated by about 180°. This allowed the linker part to reach to the Fab surface while high-affinity interactions with the nicotine moiety were maintained.  相似文献   

9.
Tobacco abuse remains a major cause of death worldwide despite ample evidence linking nicotine to various disease states. Consequently, immunopharmacotherapeutic approaches for the treatment of nicotine abuse have received increasing attention. Although a number of nicotine-binding antibodies have been disclosed, no antibody catalysts exist which efficiently degrade nicotine into pharmacologically inactive substances. Herein, we report the first catalytic antibodies which can oxidatively degrade nicotine. These biocatalysts use the micronutrient riboflavin and visible light as a source of singlet oxygen for the production of reactive oxygen species. Along with various known nicotine metabolites, antibody-catalyzed nicotine oxidations produce two novel nicotine oxidation products that were also detected in control ozonation reactions of nicotine. The reaction is efficient, with multiple turnovers of catalyst observed and total consumption of nicotine attained. These results demonstrate the potential of harnessing riboflavin as an endogenous sensitizer for antibody-catalyzed oxidations and demonstrate a new approach for the development of an active vaccine for the treatment of nicotine addiction using in vivo catalytically active antibodies.  相似文献   

10.
Nicotine has a multitude of biological actions in the central and peripheral nervous systems where nicotinic acetylcholine receptors are found. Nicotinic acetylcholine receptors have also been identified on immune cells, but the effects of nicotine on immune responses are not well characterized. These studies tested the hypotheses that nicotine has an effect on both T-lymphocyte proliferation and the production of cytokines by activated T cells, processes that are necessary for effective T-cell-mediated immune responses. In addition, the effects of nicotine on these immune responses in aging animals and the effects of nicotine exposure prior to immunostimulation were investigated. Murine splenocytes were exposed to nicotine and stimulated with concanavalin A (ConA). The highest concentration of nicotine (128 microg/ml) significantly depressed proliferation of T cells both when nicotine and ConA were added concurrently and when nicotine was added 3 hr prior to ConA. Nicotine, added concurrently with ConA at concentrations between 0. 25 and 64 microg/ml, significantly inhibited the production of IL-10 by splenocytes from young adult mice, whereas the inhibition of production of IL-10 by splenocytes from old mice was significantly inhibited, but the response was more variable, depending on the nicotine concentration. In contrast, the production of IFN-gamma by splenocytes from either young adult or old mice was not affected when nicotine (0.016-64 microg/ml) was added concurrently with ConA. Pre-exposure to 1 microg/ml of nicotine for 3 hr significantly enhanced the production of IFN-gamma by splenocytes from young adult mice, whereas pre-exposure to 0.016 microg/ml of nicotine tended to but did not significantly enhance IFN-gamma production. Nicotine is now being used as an over-the-counter drug by people who differ in age and general immunocompetence. Therefore, the effects of nicotine on immune responses, independent from the effects of the other chemicals found in tobacco, need to be investigated.  相似文献   

11.
The magnitude of Th1 cells response to vaccination is a critical factor in determining protection from clinical disease. Our previous in vitro studies suggested that exposure to the nicotine component of cigarette smoke skews the differentiation of both human and mouse dendritic cell (DC) precursors into atypical DCs (DCs differentiated ex vivo in the presence of nicotine) lacking parameters essential for the development of Th1-mediated immunity. In this study, we determined the causal relationship between nicotine-induced DC alterations and host response to vaccines. We show that animals exposed to nicotine failed to develop and maintain Ag-specific effector memory Th1 cells and Ab production to protein-based vaccine formulated with Th1 adjuvants. Accordingly, both prophylactic and therapeutic vaccines failed to protect and cure the nicotine-exposed mice from disease. More importantly, we demonstrate the nicotine-induced defects in the biological activities of in vivo DCs as an underlying mechanism. Indeed, i.v. administration of DCs differentiated in the presence of nicotine preferentially promoted the development of Ag-specific IL-4-producing effector cells in the challenged mice. In addition, DC subsets isolated from mice exposed to nicotine produced significantly less cytokines in response to Th1 adjuvants and inadequately supported the development of Ag-specific Th1 cells. Collectively, our studies suggest that nicotine-induced defects in the DC system compromises vaccine efficacy in smokers.  相似文献   

12.
Follmann D 《Biometrics》2006,62(4):1161-1169
This article introduces methods for use in vaccine clinical trials to help determine whether the immune response to a vaccine is actually causing a reduction in the infection rate. This is not easy because immune response to the (say HIV) vaccine is only observed in the HIV vaccine arm. If we knew what the HIV-specific immune response in placebo recipients would have been, had they been vaccinated, this immune response could be treated essentially like a baseline covariate and an interaction with treatment could be evaluated. Relatedly, the rate of infection by this baseline covariate could be compared between the two groups and a causative role of immune response would be supported if infection risk decreased with increasing HIV immune response only in the vaccine group. We introduce two methods for inferring this HIV-specific immune response. The first involves vaccinating everyone before baseline with an irrelevant vaccine, for example, rabies. Randomization ensures that the relationship between the immune responses to the rabies and HIV vaccines observed in the vaccine group is the same as what would have been seen in the placebo group. We infer a placebo volunteer's response to the HIV vaccine using their rabies response and a prediction model from the vaccine group. The second method entails vaccinating all uninfected placebo patients at the closeout of the trial with the HIV vaccine and recording immune response. We pretend this immune response at closeout is what they would have had at baseline. We can then infer what the distribution of immune response among placebo infecteds would have been. Such designs may help elucidate the role of immune response in preventing infections. More pointedly, they could be helpful in the decision to improve or abandon an HIV vaccine with mediocre performance in a phase III trial.  相似文献   

13.
Recent large-scale mortality of honeybee colonies is believed to be caused by multiple interactions between diseases, parasites, pesticide exposure, and other stress factors. To test whether a dual challenge has an additive effect in reducing survival, we experimentally stimulated the immune system of caged Apis mellifera scutellata workers from six colonies by injecting saline or Escherichia coli lipopolysaccharides (LPS), and additionally fed them the alkaloid nicotine (0 μM, 3 μM and 300 μM in 0.63 M sucrose). Workers did not increase their sucrose intake to compensate for the immune system activation, and those injected with E. coli LPS decreased their intake on the highest nicotine concentration. In the single challenges, injection and high nicotine doses negatively affected survival. All injected worker groups showed reduced survival. Without nicotine, survival of the saline and E. coli LPS worker groups was similar, but survival of E. coli LPS-challenged workers dropped below that of the saline groups when additionally challenged by nicotine, with bees dying earlier at higher nicotine concentrations. In the dual challenge of saline injection and dietary nicotine, a reduced effect on survival was observed, with lower mortality than expected from the summed mortalities due to the single challenges. However, additive and synergistic effects on survival were observed in workers simultaneously challenged by E. coli LPS and nicotine, indicating that interactive effects of simultaneous pathogen exposure and dietary toxin are detrimental to honeybee fitness.  相似文献   

14.
Although nicotine is thought to be one of the major immunomodulatory components of cigarette smoking, how nicotine alters the host defense of the lung and, in particular, immune responses of alveolar macrophages, which are critical effector cells in the lung defense to infection, is poorly understood. Nicotinic acetylcholine receptors (nAChRs) are the receptor for nicotine and may be involved in the modulation of macrophage function by nicotine. In this study, therefore, nicotine-induced suppression of antimicrobial activity and cytokine responses of alveolar macrophages mediated by nAChRs to Legionella pneumophila, a causative agent for pneumonia, were examined. The murine MH-S alveolar macrophage cell line cells expressed the messages for alpha4 and beta2 subunits of nAChRs, but not alpha7 subunits, determined by RT-PCR. The nicotine treatment of MH-S alveolar macrophages after infection with L. pneumophila significantly enhanced the replication of bacteria in the macrophages and selectively down-regulated the production of IL-6, IL-12, and TNF-alpha, but not IL-10, induced by infection. These effects were completely blocked by a nonselective antagonist, d-tubocurarine, for nAChRs, but not by a selective antagonist, alpha-bungarotoxin, for alpha7-nAChRs. Furthermore, the stimulation of nAChRs with another agonist, 1,1-dimethyl-4-phenylpiperazinium iodide, showed the same effects, which were blocked by the antagonist d-tubocurarine, on the bacterial replication and cytokine regulation with that of nicotine. Thus, the results revealed that nAChRs, the major exogenous ligands of which are nicotine, are involved in the regulation of macrophage immune function by nicotine and may contribute to the cigarette-induced risk factors for respiratory infections in smokers.  相似文献   

15.
The engineered expression of the immune co-stimulatory molecules CD80 and CD137L on the surface of a neuroblastoma cell line converts this tumor into a cell-based cancer vaccine. The mechanism by which this vaccine activates the immune system was investigated by capturing and analyzing immune cells responding to the vaccine cell line embedded in a collagen matrix and injected subcutaneously. The vaccine induced a significant increase in the number of activated CD62L(-) CCR7(-) CD49b(+) CD8 effector memory T cells captured in the matrix. Importantly, vaccine responsive cells could be detected in the vaccine matrix within a matter of days as demonstrated by IFN-gamma production. The substitution of unmodified tumor cells for the vaccine during serial vaccination resulted in a significant decrease in activated T cells present in the matrix, indicating that immune responses at the vaccine site are a dynamic process that must be propagated by continued co-stimulation.  相似文献   

16.
Nicotine is the addictive substance in tobacco and it has a broad impact on both the central and peripheral nervous systems. Over the past decades, an increasing number of genes potentially involved in nicotine addiction have been identified by different technical approaches. However, the molecular mechanisms underlying nicotine addiction remain largely unclear. Under such situation, a comprehensive analysis focusing on the overall functional characteristics of these genes, as well as how they interact with each other will provide us valuable information to understand nicotine addiction. In this study, we presented a systematic analysis on nicotine addiction-related genes to identify the major underlying biological themes. Functional analysis revealed that biological processes and biochemical pathways related to neurodevelopment, immune system and metabolism were significantly enriched in the nicotine addiction-related genes. By extracting the nicotine addiction-specific subnetwork, a number of novel genes associated with addiction were identified. Moreover, we constructed a schematic molecular network for nicotine addiction via integrating the pathways and network, providing an intuitional view to understand the development of nicotine addiction. Pathway and network analysis indicated that the biological processes related to nicotine addiction were complex. Results from our work may have important implications for understanding the molecular mechanism underlying nicotine addiction.  相似文献   

17.
Particularly potent cellular or humoral immune responses are needed to confer protection in animal models against such pathogens as HIV/SIV, Mycobacterium tuberculosis, and malarial parasites. Persistent, high-level vaccine Ag expression may be required for eliciting such potent and durable immune responses. Although plasmid DNA immunogens are being explored as potential vaccines for protection against these pathogens, little is known about host factors that restrict long-term plasmid DNA vaccine Ag expression in vivo. We observed rapid damping of transgene expression from a plasmid DNA immunogen in wild-type, but not in T cell-deficient mice. This damping of Ag expression was temporally associated with the emergence of Ag-specific cellular immune responses. A requirement for Fas and the appearance of apoptotic nuclei at the site of vaccine inoculation suggest that T cells induce Fas-mediated apoptosis of plasmid DNA vaccine Ag-expressing cells. These studies demonstrate that high levels of in vivo Ag expression are associated with high-frequency cellular immune responses that in turn rapidly down-regulate vaccine Ag expression in vivo. These findings argue that it may not be possible to maintain persistent, high-level production of vaccine Ag in vivo to drive persistent immune responses as long as vaccine Ag production can be limited by host immune responses.  相似文献   

18.
The mixed results from recent vaccine clinical trials targeting HIV-1 justify the need to enhance the potency of HIV-1 vaccine platforms in general. Use of first-generation recombinant adenovirus serotype 5 (rAd5) platforms failed to protect vaccinees from HIV-1 infection. One hypothesis is that the rAd5-based vaccine failed due to the presence of pre-existing Ad5 immunity in many vaccines. We recently confirmed that EAT-2-expressing rAd5 vectors uniquely activate the innate immune system and improve cellular immune responses against rAd5-expressed Ags, inclusive of HIV/Gag. In this study, we report that use of the rAd5-EAT-2 vaccine can also induce potent cellular immune responses to HIV-1 Ags despite the presence of Ad5-specific immunity. Compared to controls expressing a mutant SH2 domain form of EAT-2, Ad5 immune mice vaccinated with an rAd5-wild-type EAT-2 HIV/Gag-specific vaccine formulation significantly facilitated the induction of several arms of the innate immune system. These responses positively correlated with an improved ability of the vaccine to induce stronger effector memory T cell-biased, cellular immune responses to a coexpressed Ag despite pre-existing anti-Ad5 immunity. Moreover, inclusion of EAT-2 in the vaccine mixture improves the generation of polyfunctional cytolytic CD8(+) T cell responses as characterized by enhanced production of IFN-γ, TNF-α, cytotoxic degranulation, and increased in vivo cytolytic activity. These data suggest a new approach whereby inclusion of EAT-2 expression in stringent human vaccination applications can provide a more effective vaccine against HIV-1 specifically in Ad5 immune subjects.  相似文献   

19.
Vaccination is a conventional approach against foot‐and‐mouth disease (FMD) in pigs. However, failure to elicit an immune response to vaccine has been reported. Our previous investigation showed that ginseng stem and leaf saponins (GSLS) and mineral oil acted synergistically to promote Th1/Th2 immune responses to FMD vaccine in mice. This study was designed to i) find the optimal doses of GSLS in oil‐emulsified FMD vaccines to induce immune responses in mice and pigs and ii) to evaluate the effect of oil‐emulsified FMD vaccine supplemented with GSLS on the immune responses in pigs, by measuring the serum indirect hemagglutination (IHA) titer and IgG and IgG subclass levels. The GSLS‐enhanced immune response to FMD oil‐emulsion vaccine depended on the dose of GSLS added to the vaccine. Addition of GSLS at a dose of 40 μg to 2 ml of FMD oil‐emulsified vaccine significantly enhanced the humoral immune responses in pigs, when compared to the vaccine without GSLS (P<0.05). The increased antibodies included IgG1 and IgG2. Hence, GSLS and oil adjuvant synergistically promoted the immune responses to vaccination against FMD in pigs, and GSLS could be a promising vaccine additive to improve oil‐emulsified veterinary vaccines.  相似文献   

20.
The AIDS epidemic in the Developing World represents a major global crisis. It is imperative that we develop an effective vaccine. Vaccines are economically the most efficient means of controlling viral infections. However, the development of a vaccine against HIV-1 has been a formidable task, and in developing countries chronic parasitic infection adds another level of complexity to AIDS vaccine development. Helminthic and protozoan infections, common in developing countries, can result in a constant state of immune activation that is characterized by a dominant Th2 type of cytokine profile, high IgE levels, and eosinophilia. Such an immune profile may have an adverse impact on the efficacy of vaccines, in particular, an HIV-1 vaccine. Indeed, the CD8 cellular immune response and the corresponding Th1 type cytokines that enhance the CD8 cellular immune response are important for clearing many viral infections. It is believed that an antigen specific CD8 cellular immune response will be an important component of an HIV-1 vaccine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号