首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Epoxyeicosatrienoic acids (EETs) are known to have beneficial pharmacological effects on various cardiovascular events. However, EETs are biologically metabolized by soluble epoxide hydrolase (sEH) to less active metabolites. In our search for potent sEH inhibitors, we optimized a series of cyclopropyl urea derivatives and identified compound 38 as a potent sEH inhibitor with minimal CYP inhibition and good oral absorption in rats. Administration of 38 to DOCA-salt rats suppressed urinary albumin and MCP-1 excretion without affecting systolic blood pressure.  相似文献   

3.
Oxidative cleavage of aromatic compounds is often part of a degradative process and is widely observed in nature. The immediate catabolic products can sometimes cyclize or rearrange to new secondary metabolites. The enzymatic contraction of a dehydroisocoumarin to yield cyclopentenoid metabolites in Cryptosporiopsis sp. is reported. The label distribution of (+) cryptosporiopsin, a chlorinated cyclopentenone, was determined by analysis of the [13C]nmr of [1-13C] and [2-13C]acetate enriched-cryptosporiopsin. The putative aromatic precursor of cyclopentenoid metabolites, 2,3-dihydro-6,8-dihydroxy-2-methylisocoumarin (6), was isolated from Aspergillus terreus. This metabolite (6) was prepared doubly labeled (T14C). The aromatic origin of the Cryptosporiopsis chlorinated cyclopentenoid metabolites was rigorously proven from feeding experiments with doubly labeled compound 6. A related but nonchlorinated metabolite, terrein, was isolated from A. terreus and was also shown to be derived from [T14C]-2,3-dihydro-6,8-dihydroxy-2-methylisocoumarin.  相似文献   

4.
Cytochrome P450 BM3 mutants are promising biocatalysts for the production of drug metabolites. In the present study, the ability of cytochrome P450 BM3 mutants to produce oxidative metabolites of structurally related NSAIDs meclofenamic acid, mefenamic acid and tolfenamic acid was investigated. A library of engineered P450 BM3 mutants was screened with meclofenamic acid (1) to identify catalytically active and selective mutants. Three mono-hydroxylated metabolites were identified for 1. The hydroxylated products were confirmed by NMR analysis to be 3′-OH-methyl-meclofenamic acid (1a), 5-OH-meclofenamic acid (1b) and 4′-OH-meclofenamic acid (1c) which are human relevant metabolites. P450 BM3 variants containing V87I and V87F mutation showed high selectivity for benzylic and aromatic hydroxylation of 1 respectively. The applicability of these mutants to selectively hydroxylate structurally similar drugs such as mefenamic acid (2) and tolfenamic acid (3) was also investigated. The tested variants showed high total turnover numbers in the order of 4000–6000 and can be used as biocatalysts for preparative scale synthesis. Both 1 and 2 could undergo benzylic and aromatic hydroxylation by the P450 BM3 mutants, whereas 3 was hydroxylated only on aromatic rings. The P450 BM3 variant M11 V87F hydroxylated the aromatic ring at 4′ position of all three drugs tested with high regioselectivity. Reference metabolites produced by P450 BM3 mutants allowed the characterisation of activity and regioselectivity of metabolism of all three NSAIDs by thirteen recombinant human P450s. In conclusion, engineered P450 BM3 mutants that are capable of benzylic or aromatic hydroxylation of fenamic acid containing NSAIDs, with high selectivity and turnover numbers have been identified. This shows their potential use as a greener alternative for the generation of drug metabolites.  相似文献   

5.
Gamma-secretase modulators (GSMs) selectively lower amyloid-β42 (Aβ42) and are therefore potential disease-modifying drugs for Alzheimer’s disease (AD). Here, we report the discovery of imidazopyridine derivatives as GSMs with oral activity on not only Aβ42 levels but also cognitive function. Structural optimization of the biphenyl group and pyridine-2-amide moiety of compound 1a greatly improved GSM activity and rat microsomal stability, respectively. 5-{8-[(3,4′-Difluoro[1,1′-biphenyl]-4-yl)methoxy]-2-methylimidazo[1,2-a]pyridin-3-yl}-N-methylpyridine-2-carboxamide (1o) showed high in vitro potency and brain exposure, induced a robust reduction in brain Aβ42 levels, and exhibited undetectable inhibition of cytochrome p450 enzymes. Moreover, compound 1o showed excellent efficacy against cognitive deficits in AD model mice. These findings suggest that compound 1o is a promising candidate for AD therapeutics.  相似文献   

6.
A new compound, pheglycoside A (1), along with four known aromatic glycosides (2-5) and three known lignan glycosides (68) were isolated from Streblus ilicifolius (Vidal) Corner. The structure of compound 1 was determined by spectral analyses, including HRESIMS, 1D, and 2D NMR (COSY, HSQC, and HMBC) experiments. The absolute configuration of compound 1 was determined using the CD spectrum and experiment data. From the present investigation, all these compounds were isolated for the first time from S. ilicifolius. It is interesting that phenylpropanoid glycoside and aromatic glycosides are reported for the first time in the genus Streblus. The chemotaxonomic significance of these compounds was summarized.  相似文献   

7.
By connecting chromanone with dithiocarbamate moieties through flexible linkers, a series of hybrids as novel multifunctional AChE inhibitors have been designed and synthesized. Most of these compounds displayed strong and excellently selective inhibition to eeAChE as well as potent inhibition to self- and AChE-induced Aβ aggregation. Among them, compound 6c showed the best activity to inhibit eeAChE (IC50 = 0.10 μM) and AChE-induced Aβ aggregation (33.02% at 100 μM), and could effectively inhibit self-induced Aβ aggregation (38.25% at 25 μM). Kinetic analysis and docking study indicated that compound 6c could target both the CAS and PAS, suggesting that it was a dual binding site inhibitor for AChE. Besides, it exhibited good ability to penetrate the BBB and low neurotoxicity in SH-SY5Y cells. More importantly, compound 6c was well tolerated in mice (2500 mg/kg, po) and could attenuate the memory impairment in a scopolamine-induced mouse model. Overall, these results highlight 6c as a promising multifunctional agent for treating AD and also demonstrate that the dithiocarbamate is a valid scaffold for design of multifunctional AChE inhibitors.  相似文献   

8.
Peripherally selective inhibition of noradrenaline reuptake is a novel mechanism for the treatment of stress urinary incontinence to overcome adverse effects associated with central action. Herein, we describe our medicinal chemistry approach to discover peripheral-selective noradrenaline reuptake inhibitors to avert the risk of P-gp-mediated DDI at the blood–brain barrier. We observed that steric shielding of the hydrogen-bond acceptors and donors (HBA and HBD) of compound 1 reduced the multidrug resistance protein 1 (MDR1) efflux ratio; however, the resulting compound 6, a methoxyacetamide derivative, was mainly metabolized by CYP2D6 and CYP2C19 in the in vitro phenotyping study, implying the risk of PK variability based on the genetic polymorphism of the CYPs. Replacement of the hydrogen atom with a deuterium atom in a strategic, metabolically hot spot led to compound 13, which was mainly metabolized by CYP3A4. To our knowledge, this study represents the first report of the effect of deuterium replacement for a major metabolic enzyme. The compound 13, N-{[(6S,7R)-7-(4-chloro-3-fluorophenyl)-1,4-oxazepan-6-yl]methyl}-2-[(2H3)methyloxy]acetamide hydrochloride, which exhibited peripheral NET selective inhibition at tested doses in rats, increased urethral resistance in a dose-dependent manner.  相似文献   

9.
Alzheimer's disease (AD) is a complex neurological disorder with diverse underlying pathological processes. Several lines of evidence suggest that BACE1 is a key enzyme in the pathogenesis of AD and its inhibition is of particular importance in AD treatment. Ten new 3-hydrazinyl-1,2,4-triazines bearing pendant aryl phenoxy methyl-1,2,3-triazole were synthesized as multifunctional ligands against AD. We show that compounds containing Cl and NO2 groups at the para position of the phenyl ring, namely compounds 7c (IC50 = 8.55 ± 3.37 µM) and 7d (IC50 = 11.42 ± 2.01 µM), possess promising BACE1 inhibitory potential. Furthermore, we assessed the neuroprotective activities of 7c and 7d derivatives in PC12 neuronal cell line, which showed moderate protection against amyloid β peptide toxicity. In addition, compound 7d demonstrated metal chelating activity and moderate antioxidant potential (IC50 = 44.42 ± 7.33 µM). Molecular docking studies of these molecules revealed high-affinity binding to several amino acids of BACE1, which are essential for efficient inhibition. These results demonstrate that 1,2,4-triazine derivatives bearing an aryl phenoxy methyl-1,2,3-triazole have promising properties as therapeutic agents for AD.  相似文献   

10.
Alzheimer’s disease (AD) is the most prevalent disease of old age leading to dementia. Complex AD pathogenesis involves multiple factors viz. amyloid plaque formation, neurofibrillary tangles and inflammation. Herein we report of a new series of quinoxaline-bisthiazoles as multitarget-directed ligands (MTDLs) targeting BACE-1 and inflammation concurrently. Virtual screening of a library of novel quinoxaline-bisthiazoles was performed by docking studies. The most active molecules from the docking library were taken up for synthesis and characterized by spectral data. Compounds 8a-8n showed BACE-1 inhibition in micro molar range. One of the compounds, 8n showed BACE-1 inhibition at IC50 of 3 ± 0.07 µM. Rat paw edema inhibition in acute and chronic models of inflammation were obtained at 69 ± 0.45% and 55 ± 0.7%, respectively. Compound 8n also showed noteworthy results in AlCl3 induced AD model. The treated rats exhibited excellent antiamnesic, antiamyloid, antioxidant, and neuroprotective properties. Behavioural parameters suggested improved cognitive functions which further validates the testimony of present study. Moreover, compound 8n was found to have inherent gastrointestinal safety. This new string of quinoxaline-bisthiazoles were identified as effective lead for the generation of potent MTDLs and compound 8n was found to showcase qualities to tackle AD pathogenesis.  相似文献   

11.
A thyroid hormone receptor β subtype-selective thyromimetic 5 was found to be efficacious in both mouse and monkey hair growth models after topical applications. It penetrates the skin according to the test in human cadaver skin mounted onto Franz diffusion chambers. The serum drug level of 5 is below the limit of quantification during tests in the bald stump-tailed macaques (Macaca arctoides). It is tested negative in the 3T3 neutral red uptake (NRU) phototoxicity test, indicating a low risk for causing photo-irritation. It is also rapidly metabolized according to the PK data, thus the systemic exposure is limited.  相似文献   

12.
A series of novel N-substituted hydrazide derivatives were synthesized by reacting atranorin, a compound with a natural depside structure (1), with a range of hydrazines. The natural product and 12 new analogues (213) were investigated for inhibition of α-glucosidase. The N-substituted hydrazide derivatives showed more potent inhibition than the original. The experimental results were confirmed by docking analysis. This study suggests that these compounds are promising molecules for diabetes therapy. Molecular dynamics simulations were carried out with compound 2 demonstrating the best docking model using Gromac during simulation up to 20 ns to explore the stability of the complex ligand-protein. Furthermore, the activity of all synthetic compounds 213 against a normal cell line HEK293, used for assessing their cytotoxicity, was evaluated.  相似文献   

13.
Diamido-supported rare earth metal amides with the general formula {(CH2SiMe2)[(2,6-iPr2C6H3)N]2}LnN(SiMe3)2(THF) [(Ln = Yb(1), Y(2), Dy(3), Sm (4), Nd (5)] were found to be highly efficient catalysts for the guanylation of both aromatic and heterocyclic amines under mild conditions. It is found that these catalysts are compatible with a wide range of substituents such as iPr, Me, and MeO having electron-donating property and substituents such as Cl, Br, and O2N having electron-withdrawing property on the aromatic rings of the aromatic or the heterocyclic amines. The methodology has also the advantages of easy preparation of the catalysts, quick conversion of the substrates to products, mild reaction conditions, and low catalyst loading.  相似文献   

14.
Memoquin (1) is a lead compound multitargeted against Alzheimer’s disease (AD). It is an AChE inhibitor, free-radical scavenger, and inhibitor of amyloid-β (Aβ) aggregation. A new series of 1 derivatives was designed and synthesized by linking its 2,5-diamino-benzoquinone core with motifs that are present in the structure of known amyloid binding agents like curcumin, the benzofuran derivative SKF64346, or the benzothiazole bearing compounds KHG21834 and BTA-1. The weaker AChE inhibitory potencies and the concomitant nearly equipotent anti-amyloid activities of the new compounds with respect to 1 resulted in a more balanced biological profile against both targets. Selected compounds turned out to be effective Aβ aggregation inhibitors in a cell-based assay. By properly combining two or more distinct pharmacological properties in a molecule, we can achieve greater effectiveness compared to single-targeted drugs for investigating AD.  相似文献   

15.
Alzheimer’s disease (AD) is a multifactorial syndrome with several target proteins contributing to its etiology. In this study, we conducted a structure-based design and successfully produced a series of new multi-site AChE inhibitors with a novel framework. Compound 2e, characterized by a central benzamide moiety linked to an isoquinoline at one side and acetophenone at the other, was the most potent candidate with Ki of 6.47 nM against human AChE. Particularly, it showed simultaneous inhibitory effects against BChE, Aβ aggregation, and β-secretase. We therefore conclude that compound 2e is a very promising multi-function lead for the treatment of AD.  相似文献   

16.
In a continuing effort to discover novel PDE5 inhibitors, we have successfully found quinazolines with 4-benzylamino substitution as potent and selective PDE5 inhibitors. Initial lead compound (1) was found to be easily metabolized when incubated with human liver microsomes mainly through C6 amide hydrolysis. Blocking of this metabolic hot spot led to discovery of 10 (CKD533) which is highly potent, selective and orally efficacious in conscious rabbit model for erectile dysfunction and now is undergoing preclinical toxicology study.  相似文献   

17.
A series of novel 7-hydroxycoumarin-3-carboxamides was synthesized by the reaction of 7-hydroxy-2-oxo-2H-chromene-3-carboxylic acid with various substituted aromatic amines. The newly synthesized compounds were evaluated for their inhibitory activity against the four physiologically relevant human carbonic anhydrase (hCA, EC 4.2.1.1) isoforms CA I, CA II, CA IX and CA XII. The CA inhibition results show that the newly synthesized 7-hydroxycoumarin-3-carboxamides (4a-n) exhibited selective inhibition of the tumor associated isoforms, CA IX and CA XII over CA I and II isoforms. The inhibition constants ranged from sub micromolar to low micromolar. Amongst all the compounds tested, compound 4m was the most effective inhibitor exhibiting sub micromolar potency against both hCA IX and hCA XII, with a Ki of 0.2 µM. Therefore, it can be anticipated that compound 4m can serve as a lead for development of anticancer therapy by exhibiting a novel mechanism of action. The binding modes of the most potent compounds within hCA IX and XII catalytic clefts were investigated by docking studies.  相似文献   

18.
Fluorescence probes that can detect Aβ (β-amyloid peptide) plaque are important tools for diagnosis of Alzheimer’s disease (AD), and 4-N-methylamino-4′-hydroxystilbene (SB-13) is one of the promising candidate molecules. We report here the synthesis of SB-13 derivatives that consist of various electron donating/withdrawing moieties and distinct size of N-substituents. The synthesized compounds were screened for detection of Aβ40 fibrils in vitro. Four compounds exhibited more than sixfold intensity increase, and they were further analyzed for detail bindings and Aβ plaque imaging. Among these molecules, compound 42 meets two critical requirements for imaging agent; high fluorescence responsiveness and strong binding affinity. This compound showed more than 25-fold increase with the dissociation constant of 1.13 ± 0.37 μM. In AD mouse brain tissue, 42 selectively stained Aβ plaque, more specifically peripheral regions of Aβ plaque. This finding demonstrated its potential use as brain-imaging agents for AD studies.  相似文献   

19.
A series of new indole-3-acetic acid (IAA)-tacrine hybrids as dual acetylcholinesterase (AChE)/butyrylcholinesterase (BChE) inhibitors were designed and prepared based on the molecular docking mode of AChE with an IAA derivative (1a), a moderate AChE inhibitor identified by screening our compound library for anti-Alzheimer’s disease (AD) drug leads. The enzyme assay results revealed that some hybrids, e.g. 5d and 5e, displayed potent dual in vitro inhibitory activities against AChE/BChE with IC50 values in low nanomolar range. Molecular modeling studies in tandem with kinetic analysis suggest that these hybrids target both catalytic active site and peripheral anionic site of cholinesterase (ChE). Molecular dynamic simulations and Molecular Mechanics/Poisson-Boltzmann Surface Area (MM-PBSA) calculations indicate that 5e has more potent binding affinity than hit 1a, which may explain the stronger inhibitory effect of 5e on AChE. Furthermore, their predicted pharmacokinetic properties and in vitro influences on mouse brain neural network electrical activity were discussed. Taken together, compound 5e can be highlighted as a lead compound worthy of further optimization for designing new anti-AD drugs.  相似文献   

20.
Seven novel ARIs (3ac, 4ac and 5) were synthesized with the implementation of an optimized and, partially, selective synthetic procedure, via a Friedel–Crafts acylation reaction. The synthesized ARIs have values of IC50ALR2 ranging from 0.19 μM (in case of compound 3b) to 2.3 μM (in case of compound 4a), while the values of selectivity index towards ALR1 range from 1 (in case of compound 3b) to 238 (in case of compound 3a). Finally, we found out that the presence of an additional (secondary) aromatic area is not a prerequisite feature for ARI activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号