首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
Two novel glycosides, 4,5-dimethoxy-3-hydroxyphenol 1-O-β-(6′-O-galloyl)-glucopyranoside (1) and (+)-2α-O-galloyl lyoniresinol 3α-O-β-d-xylopyranoside (2), as well as a novel ellagitannin named epiquisqualin B (3), were isolated from sapwood of Quercus mongolica var. crispula along with 19 known phenolic compounds. The structures of the novel compounds were elucidated on the basis of chemical and spectroscopic investigation. Compound 2 is the first example of a lignan galloyl ester, and 3 is the oxidation product of vescalagin, which is the major ellagitannin of this plant.  相似文献   

2.
Chronic ultraviolet (UV) radiation exposure is a major cause of skin cancer. A novel series of hybrid derivatives (IVIII) for use in sunscreen formulations were synthesized by molecular hybridization of t-resveratrol, avobenzone, and octyl methoxycinnamate, and were characterized. The antioxidant activity values for VIII were comparable than to those of t-resveratrol. Compounds IIII and VI demonstrated Sun Protector Factor superior to that of t-resveratrol. Compounds I and IVVIII were identified as new, broad-spectrum UVA filters while IIIII were UVB filters. In conclusion, novel hybrid derivatives with antioxidant effects have emerged as novel photoprotective agents for the prevention of skin cancer.  相似文献   

3.
In our search for novel small molecules targeting histone deacetylases, we have designed and synthesized two series of novel N-hydroxybenzamides incorporating 2-oxoindolines (4ag, 6ag). Biological evaluation showed that these benzamides potently inhibited HDAC2 with IC50 values in sub-micromolar range. In three human cancer cell lines the synthesized compounds were up to 4-fold more cytotoxic than SAHA. Docking experiments indicated that the compounds tightly bound to HDAC2 at the active binding site with binding affinities much higher than that of SAHA. Our present results demonstrate that these novel and simple N-hydroxybenzamides are potential for further development as anticancer agents and further investigation of similarly simple N-hydroxybenzamides should be warranted to obtain more potent HDAC inhibitors.  相似文献   

4.
5.
A HTS screen for CCR1 antagonists afforded a novel sub-micromolar hit 5 containing a pyrazole core. In this report the design, optimization, and SAR of novel CCR1 antagonists based on a pyrazole core motif is presented. Optimization led to the advanced candidate compounds (S)-16q and (S)-16r with 250-fold improved CCR1 potency, excellent off-target selectivity and attractive drug-like properties.  相似文献   

6.
Diversity-oriented synthesis of derivatives of natural products is an important approach for the discovery of novel drugs. In this paper, a series of novel 3,4-diaryl-1H-pyrazoles and 3,5-diaryl-1H-pyrazoles derivatives were synthesized through the one-pot reaction of flavones and isoflavones with the hydrazine hydrate and substituted hydrazine hydrate. Some of these novel compounds exhibited antifungal effects against Candida albicans SC5314, and displayed more potent inhibitory activities against the efflux-pump-deficient strain DSY654. In addition, compounds 25, 28 and 32a displayed outstanding reversal activity of azole resistance against clinical azole-resistant Candida albicans in combination with fluconazole (FLC), with FICI values ranging from 0.012 to 0.141. The preliminary structure-activity relationship (SAR) of these compounds was also discussed. In conclusion, this study provides several novel agents that displayed potent antifungal activities alone or together with fluconazole, which makes progress for development of antifungal drugs.  相似文献   

7.
A series of novel pyrimidinedione derivatives were designed and evaluated for in vitro dipeptidyl peptidase-4 (DPP-4) inhibitory activity and in vivo anti-hyperglycemic efficacy. Among them, the representative compounds 11, 15 and 16 showed excellent inhibitory activity of DPP-4 with IC50 values of 64.47?nM, 188.7?nM and 65.36?nM, respectively. Further studies revealed that compound 11 was potent in vivo hypoglycemic effect. The structure–activity relationships of these pyrimidinedione derivatives had been discussed, which would be useful for developing novel DPP-4 inhibitors as treating type 2 diabetes.  相似文献   

8.
Two novel marine actinobacteria, designated as SCSIO 60955T and SCSIO 61214T, were isolated from deep-sea sediment samples collected from the South China Sea. The cells of these organisms stained Gram-negative and were rod shaped. These strains were aerobic, and catalase- and oxidase-positive. Optimal growth occurred at 28 °C and pH 7 over 14 days of cultivation. Both strains possessed phospholipids and phosphoglycolipids. The main menaquinone was MK-7. The major fatty acid was C16:0. The peptidoglycan structure was type A1γ′ (meso-Dpm). Analysis of genome sequences revealed that the genome size of SCSIO 60955T was 3.37 Mbp with G + C content of 76.1%, while the genome size of SCSIO 61214T was 3.67 Mbp with a G + C content of 74.8%. The ANI and 16S rRNA gene analysis results showed that the pairwise similarities between the two strains were 73.4% and 97.7% and that with other recognized Thermoleophilia species were less than 69.1% and 87.8%, respectively. Phylogenetic analysis of the 16S rRNA gene sequences showed that strains SCSIO 60955T and SCSIO 61214T were separately clustered together and formed a well-separated phylogenetic branch distinct from their most related neighbor Gaiella occulta. Based on the data presented here, these two strains are proposed to represent two novel species of a novel genus, for which the name Miltoncostaea marina gen. nov., sp. nov., with the type strain SCSIO 60955T (=DSM 110281T =CGMCC 1.18757T), and Miltoncostaea oceani sp. nov., with the type strain SCSIO 61214T (=KCTC 49527T =CGMCC 1.18758T) are proposed. We also propose that these organisms represent a novel family named Miltoncostaeaceae fam. nov. of a novel order Miltoncostaeales ord. nov.  相似文献   

9.
As a part of ongoing studies in developing novel anticancer agents, a series of modified 2,4-diaryl-5H-indeno[1,2-b]pyridines were designed, and synthesized by introducing hydroxyl and chlorine moieties. They were evaluated for topoisomerase inhibitory activity and cytotoxicity against HCT15, T47D, and HeLa cancer cell lines. This modification allowed us to demonstrate structure–activity relationship (SAR) study with respect to the non-substituted 2,4-diaryl-5H-indeno[1,2-b]pyridines. Compounds (2, 3, 4, 5, 8, and 9) with meta or para hydroxyl group on 2 or 4-phenyl ring have enhanced topo I and II inhibitory activity and cytotoxicity. However, additional substitution of chlorine group on furyl or thienyl ring (11, 12, 14, 16–18) generally reduced topo I and II inhibitory activity but improved cytotoxicity. The observation of cytotoxic properties and SAR study according to the position of hydroxyl and chlorine group will provide valuable insight for further study of development of novel anticancer agents with related scaffolds.  相似文献   

10.
Antibiotic resistance in bacteria has been an emerging public health problem, thus discovery of novel and effective antibiotics is urgent. A series of novel hybrids of N-aryl pyrrothine-base α-pyrone hybrids was designed, synthesized and evaluated as bacterial RNA polymerase (RNAP) inhibitors. Among them, compound 13c exhibited potent antibacterial activity against antibiotic-resistant S. aureus with the minimum inhibitory concentration (MIC) in the range of 1–4 μg/mL. Moreover, compound 13c exhibited strong inhibitory activity against E.coli RNAP with IC50 value of 16.06 μM, and cytotoxicity in HepG2 cells with IC50 value of 7.04 μM. The molecular docking study further suggested that compound 13c binds to the switch region of bacterial RNAP. In summary, compound 13c is a novel bacterial RNAP inhibitor, and a promising lead compound for further optimization.  相似文献   

11.
Strong pharmacological evidences indicate that σ1 receptors are implicated in the pathophysiology of all major CNS disorders. In the last years our research group has conducted extensive studies aimed at discovering novel σ1 ligands and we recently selected (R/S)-RC-33 as a novel potent and selective σ1 receptor agonist. As continuation of our work in this field, here we report our efforts in the development of this new σ1 receptor agonist. Initially, we investigated the binding of (R) and (S) enantiomers of RC-33 to the σ1 receptor by in silico experiments. The close values of the predicted affinity of (R)-RC-33 and (S)-RC-33 for the protein evidenced the non-stereoselective binding of RC-33 to the σ1 receptor; this, in turn, supported further development and characterization of RC-33 in its racemic form. Subsequently, we set-up a scaled-up, optimized synthesis of (R/S)-RC-33 along with some compound characterization data (e.g., solubility in different media and solid state characterization by thermal analysis techniques). Finally, metabolic studies of RC-33 in different biological matrices (e.g., plasma, blood, and hepatic S9 fraction) of different species (e.g., rat, mouse, dog, and human) were performed. (R/S)-RC-33 is generally stable in all examined biological matrices, with the only exception of rat and human liver S9 fractions in the presence of NADPH. In such conditions, the compound is subjected to a relevant oxidative metabolism, with a degradation of approximately 65% in rat and 69% in human.Taken together, our results demonstrated that (R/S)-RC-33 is a highly potent, selective, metabolically stable σ1 agonist, a promising novel neuroprotective drug candidate.  相似文献   

12.
We initiated our structure-activity relationship (SAR) studies for novel ACC1 inhibitors from 1a as a lead compound. Our initial SAR studies of 1H-Pyrrolo[3,2-b]pyridine-3-carboxamide scaffold revealed the participation of HBD and HBA for ACC1 inhibitory potency and identified 1-methyl-1H-pyrrolo[3,2-b]pyridine-3-carboxamide derivative 1c as a potent ACC1 inhibitor. Although compound 1c had physicochemical and pharmacokinetic (PK) issues, we investigated the 1H-pyrrolo[3,2-b]pyridine core scaffold to address these issues. Accordingly, this led us to discover a novel 1-isopropyl-1H-pyrrolo[3,2-b]pyridine-3-carboxamide derivative 1k as a promising ACC1 inhibitor, which showed potent ACC1 inhibition as well as sufficient cellular potency. Since compound 1k displayed favorable bioavailability in mouse cassette dosing PK study, we conducted in vivo Pharmacodynamics (PD) studies of this compound. Oral administration of 1k significantly reduced the concentration of malonyl-CoA in HCT-116 xenograft tumors at a dose of 100 mg/kg. Accordingly, our novel series of potent ACC1 inhibitors represent useful orally-available research tools, as well as potential therapeutic agents for cancer and fatty acid related diseases.  相似文献   

13.
Two novel γ-lactone derivatives, trigoheterophines A (1) and B (2), together with four known furan derivatives (36), were isolated from the stems and leaves of Trigonostemon heterophyllus. The structures of 1 and 2 were elucidated by extensive spectroscopic methods and the known compounds were identified by comparing with the data reported in literature. Among them, trigoheterophines A (1) and B (2) represent an unusual type of γ-lactone derivatives, possessing 21 carbon atoms on the carbon skeleton, and known compouds (36) are rare furan derivatives in the plant kingdom with diverse long-chain hydrocarbyl groups as substituents at C-4. All isolated compounds were evaluated for their antiproliferative activities against five human cancer cell lines: HL-60, SMMC-7721, A-549, MCF-7 and SW480 in vitro. Compounds 16 showed significant antiproliferative effects against various human cancer cell lines with IC50 values ranging from 0.28 to 12.06 μM. These findings suggest that the discoveries of these novel γ-lactone derivatives and furan derivatives with significant antiproliferative activities isolated from T. heterophyllus could be of great importance to the development of new anticancer agents.  相似文献   

14.
Herein, we report a library consisting of some novel glitazones containing thiazolidinedione and its bioisosteres, rhodanine and oxadiazolidine ring structures as their basic scaffold for their antidiabetic activity. Twelve novel glitazones with diverse chemical structures were designed and synthesized by adopting appropriate synthetic schemes and analyzed. Later, subjected to in vitro glucose uptake assay in the absence and presence of insulin to confirm their antidiabetic activity using rat hemi-diaphragm. The titled compounds exhibited glucose uptake activity ranging weak to significant activity. Compounds 4, 5, 9, 11, 15, 16, 19 and 20 showed considerable glucose uptake activity apart from rosiglitazone, a standard drug. Compound 16 happens to be the candidate compound from this study to investigate further. The illustration about their design, synthesis, analysis and glucose uptake activity is reported here along with the in vitro and in silico study based structure–activity relationships.  相似文献   

15.
16.
KCNQ (Kv7) has emerged as a validated target for the development of novel anti-epileptic drugs. In this paper, a series of novel N-phenylbutanamide derivatives were designed, synthesized and evaluated as KCNQ openers for the treatment of epilepsy. These compounds were evaluated for their KCNQ opening activity in vitro and in vivo. Several compounds were found to be potent KCNQ openers. Compound 1 with favorable in vitro activity was submitted to evaluation in vivo. Results showed that compound 1 owned significant anti-convulsant activity with no adverse effects. It was also found to posses favorable pharmacokinetic profiles in rat. This research may provide novel potent compounds for the discovery of KCNQ openers in treating epilepsy.  相似文献   

17.
In our search for novel small molecules targeting histone deacetylases, we have designed and synthesized several series of novel N-hydroxybenzamides/N-hydroxypropenamides incorporating quinazolin-4(3H)-ones (4a-h, 8a-d, 10a-d). Biological evaluation showed that these hydroxamic acids were generally cytotoxic against three human cancer cell lines (SW620, colon; PC-3, prostate; NCI-H23, lung cancer). It was found that the N-hydroxypropenamides (10a-d) were the most potent, both in term of HDAC inhibition and cytotoxicity. Several compounds, e.g. 4e, 8b-c, and 10a-c, displayed up to 4-fold more potent than SAHA (suberoylanilide hydroxamic acid, vorinostat) in term of cytotoxicity. These compounds also comparably inhibited HDACs with IC50 values in sub-micromolar range. Docking experiments on HDAC2 isozyme revealed some important features contributing to the inhibitory activity of synthesized compounds, especially for propenamide analogues. Importantly, the free binding energy computed was found to have high quantitative correlation (R2 ∼ 95%) with experimental results.  相似文献   

18.
Prostate-specific membrane antigen (PSMA) is an important biological target for therapy and diagnosis of prostate cancer. In this study, novel multivalent PSMA inhibitors with glutamate-urea-lysine structures were designed to improve inhibition characteristics. Precursors of the novel inhibitors were prepared from glutamic acid with di-tert-butyl ester. A near-infrared molecular dye, sulfo-Cy5.5, was introduced into the precursors to generate the final PSMA fluorescent inhibitors, compounds 1214, to visualize prostate cancer. Biological behaviors of the inhibitors were evaluated using in vitro inhibition assays, in vivo fluorescent imaging, and ex vivo biodistribution assays. Ki values from inhibition studies indicated that dimeric inhibitor 13 with a glutamine linker showed approximately 3-fold more inhibitory activity than monomeric inhibitor 12. According to other biological studies using a mouse model of prostate cancer, dimeric inhibitor compounds 13 and 14 had higher tumor accumulation than the monomer. However, glutamine-based dimeric inhibitor 13 showed lower liver uptake than dimeric inhibitor 14, which had a benzene structure. Thus, these studies suggest that glutamine-based dimeric inhibitor 13 can be a promising optical inhibitor of prostate cancer.  相似文献   

19.
Convenient structure modification of (+)-catechin (1) induced by nonthermal dielectric barrier discharge (DBD) plasma treatment afforded three novel methylene-linked flavan-3-ol oligomers, methylenetetracatechin (2), methylenetricatechin (3), and methylenedicatechin (4), together with two known catechin dimers, bis 8,8′-catechinylmethane (5) and bis 6,8′-catechinylmethane (6). The structures of the three new catechin oligomers 24 with methylene bridges were elucidated by detailed 1D- and 2D-NMR analysis, and the absolute configurations were established by the observation of circular dichroism (CD). The novel products 2 and 3 showed significantly enhanced anti-adipogenic capacities against both pancreatic lipase and differentiation of 3T3-L1 preadipocytes compared to the parent (+)-catechin.  相似文献   

20.
The analysis of genome sequence indicated that Streptomyces sp. LZ35 has the potential of producing many types of secondary metabolites, including p-terphenyls and geldanamycins. The fermentation of LZ35 in laboratory produces geldanamycins as the major components, which hampers the isolation of minor compounds. To clean the background of geldanamycins, the mutant strain LZ35ΔgdmAI of Streptomyces sp. LZ35 was constructed by disrupting the first PKS module of geldanamycin gene cluster (gdm). From this mutant, five novel p-terphenyls bearing glucuronic acid moiety, namely echosides A–E (15), were isolated with the aid of chromophore-guided fractionation. The structures of 15 were elucidated by the analysis of their HR-ESI-MS and NMR spectroscopic data. DNA relaxation assay indicated that compound 1 had evident inhibitory activity against topoisomerase I. Moreover, the inhibitory activity of compound 3 against topoisomerase IIα is approximately equal to VP16, indicating that p-terphenyl O-β-glucuronides are promising leads for the development of novel inhibitors of topoisomerases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号