首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four series of acid amides were synthesized, and through measurement using a fluorogenic substrate assay with human recombinant MMP-1, MMP-2 and MMP-9, compound 3f showed considerable inhibitory activities against MMP-2, MMP-9 and the best selectivity over MMP-1. Preliminary structure–activity relationship analysis indicated that caffeic acid amides with electron-donating groups at para-position of amino phenyl group showed better inhibitory activities and selectivity than those with electron-withdrawing groups, and the presence of adjacent dihydroxy in the caffeoyl group was very important for the MMP-2 and MMP-9 inhibitory activities.  相似文献   

2.
Tabersonine, the main alkaloid in Voacanga seeds, was used as a lead compound to semi-synthesize tabersonine derivatives. In total, 13 compounds, containing 10 novel tabersonine derivatives, were synthesized by introducing substituent groups R1–R5. The acetylcholinesterase (AChE) inhibitory activities of tabersnonine derivatives were evaluated using Ellman’s method. Among them, compound (7) showed the highest AChE inhibitory activity with the IC50 value was 5.32 μM. The substituent groups R1–R5 showed different influences on the AChE inhibitory activities of tabersonine derivatives. The AChE inhibitory activities of tabersonine derivatives increased with the introduction of group R1 and/or combined groups R3, R4, while decreased with the introduction of group R5. And the group R2 showed no significant influence on the AChE inhibitory activities of tabersonine derivatives.  相似文献   

3.
Cyanobacterial pyruvate dehydrogenase multienzyme complex E1 (PDHc E1) is a potential target enzyme for finding inhibitors to control harmful cyanobacterial blooms. In this study, a series of novel triazole thiamin diphosphate (ThDP) analogs were designed and synthesized by modifying the substituent group of triazole ring and optimizing triazole-benzene linker as potential cyanobacterial PDHc E1 (Cy-PDHc E1) inhibitors. Their inhibitory activities against Cy-PDHc E1 in vitro and algicide activities in vivo were further examined. Most of these compounds exhibited prominent inhibitory activities against Cy-PDHc E1 (IC50 1.48–4.48 μM) and good algicide activities against Synechocystis PCC6803 (EC50 0.84–2.44 µM) and Microcystis aeruginosa FACHB905 (EC50 0.74–1.77 µM). Especially, compound 8d showed not only the highest inhibitory activity against Cy-PDHc E1 (IC50 1.48 μM), but also the most powerful inhibitory selectivity between Cy-PDHc E1 (inhibitory rate 98.90%) and porcine PDHc E1 (inhibitory rate only 9.54%). Furthermore, the potential interaction between compound 8d and Cy-PDHc E1 was analyzed by a molecular docking method and site-directed mutagenesis and enzymatic analysis and fluorescence spectral analysis. These results indicated that compound 8d could be used as a hit compound for further optimization and might have potential to be developed as a new algicide.  相似文献   

4.
Guanylate cyclase activities in supernatant and particulate fractions of homogenates from various rat tissues were examined in fed and fasted normal animals and in those with diabetes mellitus induced with streptozotocin. With fasting guanylate cyclase activity in supernatant fractions increased in liver and epididymal fat, decreased in kidney and lung, and was unchanged in cerebral cortex and skeletal muscle. Lung particulate activity also decreased with fasting while particulate activities in other tissues were unchanged. In diabetic animals soluble but not particulate activity was less in several tissues and the effect of fasting on soluble liver guanylate cyclase was absent. The effect of fasting on soluble liver guanylate cyclase reversed with refeeding animals and was associated with a decrease in the apparent Km for GTP as well as an increase in V. An inhibitory material was found in livers from fed but not fasted animals. The inhibitory material had properties of a nucleotide and inhibited guanylate cyclase in a competitive manner. Thus, soluble and particulate guanylate cyclase activities can be influenced independently of one another in the same and different tissues with fasting, refeeding, and diabetes mellitus. Some of these effects may be attributable to altered levels of small heat-stable inhibitory materials such as nucleotides.  相似文献   

5.
The aim of this meta-analysis was to summarise data from neuropsychological studies on inhibitory control to general and disease-salient (i.e., food/eating, body/shape) stimuli in bulimic-type eating disorders (EDs). A systematic literature search was conducted to identify eligible experimental studies. The outcome measures studied included the performance on established inhibitory control tasks in bulimic-type EDs. Effect sizes (Hedges'' g) were pooled using random-effects models. For inhibitory control to general stimuli, 24 studies were included with a total of 563 bulimic-type ED patients: 439 had bulimia nervosa (BN), 42 had anorexia nervosa of the binge/purge subtype (AN-b), and 82 had binge eating disorder (BED). With respect to inhibitory control to disease-salient stimuli, 12 studies were included, representing a total of 218 BN patients. A meta-analysis of these studies showed decreased inhibitory control to general stimuli in bulimic-type EDs (g = −0.32). Subgroup analysis revealed impairments with a large effect in the AN-b group (g = −0.91), impairments with a small effect in the BN group (g = −0.26), and a non-significant effect in the BED group (g = −0.16). Greater impairments in inhibitory control were observed in BN patients when confronted with disease-salient stimuli (food/eating: g = −0.67; body/shape: g = −0.61). In conclusion, bulimic-type EDs showed impairments in inhibitory control to general stimuli with a small effect size. There was a significantly larger impairment in inhibitory control to disease salient stimuli observed in BN patients, constituting a medium effect size.  相似文献   

6.
The extract of Tabebuia avellanedae has been used as a folk medicine, and the various biological activities of T. avellanedae have been extensively studied. However, few studies have reported which natural products play a role in their biological effects. In this study, we evaluated representative naphthoquinones isolated from T. avellanedae and found that furanonaphthoquinones were the key structures required to exhibit STAT3 phosphorylation inhibitory activities. Our SAR analysis indicated that removal of a hydroxyl group enhanced the STAT3 phosphorylation inhibitory activity. In addition, the combined results of a mobility shift assay, SH2 domain binding assay, and docking simulation by Autodock 4.2.6 suggested that (S)-5-hydroxy-2-(1-hydroxyethyl)naphtho[2,3-b]furan-4,9-dione (1) could directly bind to the hinge region of STAT3.  相似文献   

7.
Increased osteoclastic bone resorption plays a central role in the pathogenesis of many bone diseases, and osteoclast inhibitors are the most widely used treatments for these diseases. Ginsenosides, the main component of ginseng, have been known for their medicinal effects such as anti-inflammatory and anti-proliferative activities. In this study, we investigated the inhibitory effects of ginsenosides (ginsenoside 20(R)-Rh2 and ginsenoside 20(S)-Rh2) on osteoclastgenesis using RAW264 cells in vitro. Only ginsenoside 20(R)-Rh2 showed selective osteoclastgenesis inhibitory activity without any cytotoxicity up to 100 μM. These results implied that the stereochemistry of the hydroxyl group at C-20 may play an important role in selective osteoclastgenesis inhibitory activity.  相似文献   

8.
O-Alkylated quercetin analogs were synthesized and their anticancer activities were assessed by a high-throughout screening (HTS) method. The structure–activity relationships (SAR) showed that introduction of long alkyl chain such as propyl group at the C-3 OH position or short alkyl chain such as ethyl group at the C-4′ OH position were very important for keeping inhibitory activities against the 16 cancer cell lines. Furthermore, when the two n-butyl groups were introduced into the C-3, C-7 or C-4′, C-7 positions, the anticancer activity was enhanced.  相似文献   

9.
A series of eighteen pyrano[4,3-b][1]benzopyranone derivatives (1a-9b) were synthesized, and structure-activity relationships of their monoamine oxidase (MAO) A and B, acetylcholinesterase (AChE), and butyrylcholinesterase (BChE) inhibitory activities were evaluated. Most of the synthesized compounds exhibited weak inhibitory activity toward MAO-A, whereas compounds 2a, 2b, 4a, 4b, 5a, 5b, 6a, 6b, 8a and 8b showed potent inhibitory activities toward MAO-B. Intriguingly, compounds 5a, 5b, and 8a showed inhibitory activities comparable to pargylin, used as a positive control for MAO-B. Substitution of butoxy at the C3 position or of chlorine at the C8 position of pyrano[4,3-b][1]benzopyranone increased the inhibitory activity of the compound toward MAO-B. The results of a molecular docking study supported this structural effect. Most of the compounds exhibited no or slight inhibitory activity toward AChE and BChE, with exo type compounds bearing a butoxy group, such as compounds 2b, 5b and 8b, showing weak but distinct inhibitory activities toward BChE. This report is the first to identify pyrano[4,3-b][1]benzopyranone derivatives as potent and selective MAO-B inhibitors. 3-Butoxy-8-chloro-pyrano[4,3-b][1]benzopyranone (5b) may be useful as a lead compound for the development of MAO-B inhibitors.  相似文献   

10.
Bromodomain and extra-terminal (BET) proteins, a class of epigenetic reader domains has emerged as a promising new target class for small molecule drug discovery for the treatment of cancer, inflammatory, and autoimmune diseases. Starting from in silico screening campaign, herein we report the discovery of novel BET inhibitors based on [1,2,4]triazolo[4,3-a]quinoxaline scaffold and their biological evaluation. The hit compound was optimized using the medicinal chemistry approach to the lead compound with excellent inhibitory activities against BRD4 in the binding assay. The substantial antiproliferative activities in human cancer cell lines, promising drug-like properties, and the selectivity for the BET family make the lead compound (13) as a novel BRD4 inhibitor motif for anti-cancer drug discovery.  相似文献   

11.
A series of new substituted 4-amino-N-(diaminomethylene) benzenesulfonamides were synthesized and their in vitro acrosin inhibitory activities were evaluated. Most of the compounds showed potent acrosin inhibitory activities with compounds 4o and 4p being significantly more potent than the control compound N-alpha-tosyl-l-lysyl-chloromethyl-ketone (TLCK). The compounds provide a new scaffold for the development of acrosin inhibitory agents.  相似文献   

12.
Five series of novel carbazole derivatives containing an aminoguanidine, dihydrotriazine, thiosemicarbazide, semicarbazide or isonicotinic moiety were designed, synthesised and evaluated for their antimicrobial activities. Most of the compounds exhibited potent inhibitory activities towards different bacterial strains (including one multidrug-resistant clinical isolate) and one fungal strain with minimum inhibitory concentrations (MICs) between 0.5 and 16 µg/ml. Compounds 8f and 9d showed the most potent inhibitory activities (MICs of 0.5–2 µg/ml). Furthermore, compounds 8b, 8d, 8f, 8k, 9b and 9e with antimicrobial activities were not cytotoxic to human gastric cancer cell lines (SGC-7901 and AGS) or a normal human liver cell line (L-02). Structure–activity relationship analyses and docking studies implicated the dihydrotriazine group in increasing the antimicrobial potency and reducing the toxicity of the carbazole compounds. In vitro enzyme activity assays suggested that compound 8f binding to dihydrofolate reductase might account for the antimicrobial effect.  相似文献   

13.
The Van enzymes are ATP-dependant ligases responsible for resistance to vancomycin in Staphylococcus aureus and Enteroccoccus species. The de novo molecular design programme SPROUT was used in conjunction with the X-ray crystal structure of Enterococcus faecium d-alanyl-d-lactate ligase (VanA) to design new putative inhibitors based on a hydroxyethylamine template. The two best ranked structures were selected and efficient syntheses developed. The inhibitory activities of these molecules were determined on E. faecium VanA, and due to structural similarity and a common reaction mechanism, also on d-Ala-d-Ala ligase (DdlB) from Escherichia coli. The phosphate group attached to the hydroxyl moiety of the hydroxyethylamine isostere within these systems is essential for their inhibitory activity against both VanA and DdlB.  相似文献   

14.
Chroman derivatives exhibited potent inhibitory activity of NF-κB. For SAR, the chroman scaffold was modified with an indoline moiety. A series of indoline-2-carboxylic acid N-(substituted)phenylamide derivatives were synthesized to explore their inhibitory activities of NF-κB and they were also evaluated for cytotoxicity against various cancer cell lines. Since intermediates with Boc showed outstanding results, various substituents in place of the Boc group were introduced additionally and these compounds were also evaluated for SAR.  相似文献   

15.
Despite of a diverse range of biological activities associated with chalcones and bis-chalcones, they are still neglected by the medicinal chemist for their possible α-amylase inhibitory activity. So, the current study is based on the evaluation of this class for the identification of new leads as α-amylase inhibitors. For that purpose, a library of substituted chalcones 113 and bis-chalcones 1418 were synthesized and characterized by spectroscopic techniques EI-MS and 1H NMR. CHN analysis was carried out and found in agreement with the calculated values. All compounds were evaluated for in vitro α-amylase inhibitory activity and demonstrated good activities in the range of IC50 = 1.25 ± 1.05–2.40 ± 0.09 µM as compared to the standard acarbose (IC50 = 1.04 ± 0.3 µM). Limited structure–activity relationship (SAR) was established by considering the effect of different groups attached to aryl rings on varying inhibitory activity. SMe group in chalcones and OMe group in bis-chalcones were found more influential on the activity than other groups. However, in order to predict the involvement of different groups in the binding interactions with the active site of α-amylase enzyme, in silico studies were also conducted.  相似文献   

16.
Dimeric cynnamoyl analogues (DCAs) with depigmenting activity have been developed. In this study, a role of diamide linkage chain length of DCAs as a tyrosinase inhibitor was investigated on tyrosinase inhibitory activity, antioxidative activity, hydrophobicity and anti-melanogenesis as well as structural characteristics and dipole moments based on density functional theory. DCAs with different diamide-link chain lengths (n?=?2, 3, and 4) and various functional groups (m-coumaroyl, p-coumaroyl, isoferuloyl and feruloyl groups) were synthesized. DCAs with a diamide-link chain length of three indicated high inhibitory effect of melanin production on α-melanocyte stimulating hormone (α-MSH) stimulated B16F1 cells. Approach of p-hydroxyl group of DCAs to active site of tyrosinase, an important melanogenic enzyme, is interfered by addition of m-methoxy group. In structural modeling based on density functional theory, DCAs with a diamide-link chain length of three showed folded shapes, and they had lower dipole moment than with a diamide-link chain length of two or four. Thus, for the enhancement of the depigmenting activities of dimeric compounds, the diamide-link chain length is important. Our results provide an important index for the design of dimeric compounds with physiological activities.  相似文献   

17.
Isothermal titration calorimetry (ITC) was applied to determine enzymatic activity and inhibition. We measured the Michaelis–Menten kinetics for trypsin-catalyzed hydrolysis of two substrates, casein (an insoluble macromolecule substrate) and Nα-benzoyl-dl-arginine β-naphthylamide (a small substrate), and estimated the thermodynamic parameters in the temperature range from 20 to 37 °C. The inhibitory activities of reversible (small molecule benzamidine) and irreversible (small molecule phenylmethanesulfonyl fluoride and macromolecule α1-antitrypsin) inhibitors of trypsin were also determined. We showed the usefulness of ITC for fast and direct measurement of inhibition constants and half-maximal inhibitory concentrations and for predictions of the mechanism of inhibition. ITC kinetic assays could be an easy and straightforward way to estimate Michaelis–Menten constants and the effectiveness of inhibitors as well as to predict the inhibition mechanism. ITC efficiency was found to be similar to that of classical spectrophotometric enzymatic assays.  相似文献   

18.
Several members of a new family of non-sugar-type α-glycosidase inhibitors, bearing a 5-(p-toluenesulfonylamino)phthalimide moiety and various substituent at the N2 position, were synthesized and their activities were investigated. The newly synthesized compounds displayed different inhibition profile towards yeast α-glycosidase and rat intestinal α-glycosidase. Almost all the compounds had strong inhibitory activities against yeast α-glycosidase. Regarding rat intestinal α-glycosidase, only analogs with N2-aromatic substituents displayed varying degrees of inhibitory activities on rat intestinal maltase and lactase and nearly all compounds showed no inhibition against rat intestinal α-amylase. Structure–activity relationship studies indicated that 5-(p-toluenesulfonylamino)phthalimide moiety is a favorable scaffold to exert the α-glucosidase inhibitory activity and substituents at the N2 position have considerable influence on the efficacy of the inhibition activities.  相似文献   

19.
We report herein the synthesis of some N-Mannich bases in addition to different N-4 substituents of norfloxacin. The antibacterial activities of the newly synthesized compounds were evaluated and correlated with their physicochemical properties. Results revealed that some of the tested compounds exhibited better inhibitory activities than the reference antibiotic norfloxacin against Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumonia and Staphylococcus aureus strains. Correlation results showed that there is no single physicochemical parameter that can determine the effect of N-4 piperazinyl group on the activity of these fluoroquinolones, where lipophilicity, molecular mass and electronic factors may influence the activity.  相似文献   

20.
The inhibitory influences exerted mutually among the receptor units (ommatidia) of the lateral eye of Limulus are additive. If two groups of receptors are illuminated together the total inhibition they exert on a "test receptor" near them (decrease in the frequency of its nerve impulse discharge in response to light) depends on the combined inhibitory influences exerted by the two groups. If the two groups are widely separated in the eye, their total inhibitory effect on the test receptor equals the sum of the inhibitory effects they each produce separately. If they are close enough together to interact, their effect when acting together is usually less than the sum of their separate effects, since each group inhibits the activity of the other and hence reduces its inhibitory influence. However, the test receptor, or a small group illuminated with it, may interact with the two groups and affect the net inhibitory action. A variety of quantitative effects have been observed for different configurations of three such groups of receptors. The activity of a population of n interacting elements is described by a set of n simultaneous equations, linear in the frequencies of the receptor elements involved. Applied to three interacting receptors or receptor groups equations are derived that account quantitatively for the variety of effects observed in the various experimental configurations of retinal illumination used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号