首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The general distribution of monogenean parasites of aquatic vertebrates inhabiting Chinese inland waters is summarised. Five hundred and seventy-two out of a total of 581 species of monogeneans were discovered on fish, while only nine species were found on Amphibia and Reptilia. Most dactylogyrids and diplozoids parasitise cyprinids, while ancyrocephalids occur on silurids and cyprinids, and gyrodactylids are found mainly on cyprinids and cobitids. Analyses of host-specificity and host-diversity suggests that the family Ancyrocephalidae should be divided into several families parallel with the Dactylogyridae. Of 12 subfamilies of the Cyprinidae, only the Gobiobotinae was found to be free of infection with monogeneans, and the genus Dactylogyrus has more species than any other monogenean genus associated with every cyprinid subfamily.  相似文献   

2.
Phylogenetic analyses based on partial 18S rDNA sequences of polyonchoinean monogeneans were conducted in order to investigate the relationships between selected families and subfamilies of the Dactylogyrinea, mainly within the Dactylogyridae. We tested the status of the Ancyrocephalidae sensu Bychowsky & Nagibina (1978) and the Ancyrocephalinae sensu Kritsky & Boeger (1989). Within the Dactylogyrinea, the Diplectanidae and Dactylogyridae are well supported by maximum likelihood and maximum parsimony analyses, but their phylogenetic relationship with the Pseudomurraytrematidae remains unresolved. Phylogenetic relationships between the Pseudodactylogyrinae, Ancyrocephalinae, Ancylodiscoidinae and Dactylogyrinae indicate paraphyly of the Ancyrocephalidae sensu Bychowsky & Nagibina (1978). The group of species recently considered as the Dactylogyridae sensu Kritsky & Boeger (1989) comprises two sister groups. The first group includes the freshwater Ancyrocephalinae and the Ancylodiscoidinae. The second group includes the Pseudodactylogyrinae, Dactylogyrinae and the Ancyrocephalinae from the fish species Siganus doliatus and Tetraodon fluviatilis. The non-monophyly of the Ancyrocephalinae (i.e. the non-monophyly of the group of species recently considered as members of Ancyrocephalinae), previously suggested by Kritsky & Boeger (1989) using the morphological characters, indicates that classification of the Dactylogyridae needs to be revised.  相似文献   

3.
我国内陆水体单殖吸虫的宿主特异性分析   总被引:2,自引:0,他引:2  
报道我国内陆水体单殖吸虫的宿主特异性的研究。研究表明单殖吸虫有很强的宿主特异性,但不同种类的特异的有很大的判别。从目前已有的记录来看,60%以上的单殖吸虫中只有1种宿主,约75%的单殖吸虫的宿主仅为1属,超过97%的单殖吸虫的宿主在1科之内。没有1种单殖吸虫可生于超过3个料的宿主中,但大钩指环虫可在23属33种宿主中寄生。在科和发放持异性水平,以锚首虫科和指环虫科单殖吸虫的特异性较强,三代虫科次之  相似文献   

4.
Species of the order Mysida (Crustacea, Peracarida) are shrimp-like animals that occur in vast numbers in coastal regions of the world. The order Mysida comprises 1,053 species and 165 genera. The present study covers 25 species of the well-defined Mysidae, the most speciose family within the order Mysida. 18S rRNA sequence analysis confirms that the subfamily Siriellinae is monophyletic. On the other hand the subfamily Gastrosaccinae is paraphyletic and the subfamily Mysinae, represented in this study by the tribes Mysini and Leptomysini, consistently resolves into three independent clades, and hence is clearly not monophyletic. The tribe Mysini is not monophyletic either, and forms two clades of which one appears to be closely related to the Leptomysini. Our results are concordant with a number of morphological differences urging a taxonomic revision of the Mysidae.  相似文献   

5.
6.
蝙蝠科蝙蝠遍布全世界,是蝙蝠中种类最多的一个科.尽管从形态学、胚胎学和分子生物学等方面认为蝙蝠科内长翼蝠亚科应该提升到科、鼠耳蝠属应该提升到亚科的分类地位,但是其科内的系统关系长期以来一直处于争议之中.本文对蝙蝠科11种38个标本线粒体16S rRNA部分序列进行了测序,并结合以前报道的13种(属于7科13属)蝙蝠的线粒体16S rRNA部分序列构建了系统树,结果表明:长翼蝠亚科可以提升到科的分类地位、鼠耳蝠属提升到亚科的分类地位,这与前人报道的结果一致;相对于由鼠耳蝠亚科、彩蝠亚科和管鼻蝠亚科构成的分支,蝙蝠亚科和Antrozoinae是一个并系群.蝙蝠亚科内的亲缘关系也进行了进一步的讨论.  相似文献   

7.
A molecular phylogeny was inferred from newly obtained partial 28S rRNA gene sequences of Sundanonchus micropeltis (Sundanonchidae), Thaparocleidus siamensis and Cichlidogyrus sp. (Ancyrocephalidae), and other already available sequences. Although sequences are lacking for several families, the following phylogenetic relationships could be inferred. The Diplectanidae were the sister-group to a clade including Sundanonchus and the Ancyrocephalidae; Sundanonchus was the sister-group to the Ancyrocephalidae, therefore suggesting validity of the Sundanonchidae, which include this single genus; within the Ancyrocephalidae, Thaparocleidus (Ancylodiscoidinae) was the sister-group to the four other taxa, though with relatively low support, suggesting that the Ancylodiscoidinae are the sister-group to the Ancyrocephalinae.  相似文献   

8.
Dactylogyrus species (Dactylogyridae: Monogenea) are a group of monogenean gill parasites that are highly specific to freshwater fish of the family Cyprinidae. Dactylogyrus species were sampled from 19 cyprinids and one percid collected in Europe. Using partial 18S rDNA and ITS1 sequences, a phylogeny of 51 Dactylogyrus species was reconstructed to investigate the patterns of parasite speciation and diversification. Three main Dactylogyrus lineages were recognized from all phylogenetic trees, that is, analysis of 18S rDNA alone and combined 18SrDNA and ITS1. The first lineage associates the Dactylogyrus species of Cyprinus carpio and Carassius auratus of the Cyprininae; the second associates Dactylogyrus species of the Gobioninae, Pseudorasbora parva of the Rasborinae, and Ctenopharyngodon idella of the Cyprininae; and the third associates Dactylogyrus species of the Leuciscinae and Alburninae and Barbus barbus of the Cyprininae. Our results suggest that the genus Dactylogyrus is of quite recent origin and that these three lineages separated from each other in a very short period of time. Host subfamily mapping onto the parasite tree inferred from analysis of the combined dataset showed that the Cyprininae could be plesiomorphic hosts for Dactylogyrus. Dactylogyrus parasites would have secondarily colonized the Percidae and representatives of the Leuciscinae, Alburninae, Gobioninae, and Rasborinae. Comparison of host and parasite phylogenetic relationships indicated that a very high number of parasite duplications occurred within two of the three Dactylogyrus lineages. Dactylogyrus diversification can be mainly explained by sympatric intrahost speciation events that seem to be correlated to strict host specificity. Moreover, the present study shows that the congeneric parasites speciating within one host tend to occupy niches within hosts differing at least in one niche parameter.  相似文献   

9.
The revision of punctate rhynchonellids of the superfamily Rhynchoporoidea revealed that the superfamily is composite. Based on the detail study of shell interior, the punctate rhynchonellids of the genus Rhynchopora King, 1865, subfamily Rhynchoporinae Muir-Wood, 1955 are placed into the family Trigonirhynchiidae Schmidt, 1965, superfamily Rhynchotrematoidea Schuchert, 1913. The genera Greira Erlanger, 1993, Tchanakhtchirostrum Sartenaer et Plodowski, 2003, Sharovaella Pakhnevich, 2012, Zaigunrostrum Sartenaer et Plodowski, 2003 are also referred to this family within the subfamily Greirinae Erlanger, 1993. The only genus of the subfamily Tretorhynchinae Savage, 2002, Tretorhynchia Brunton, 1971, is moved to the family Leiorhynchidae Stainbrook, 1945, superfamily Camarotoechioidea Schuchert, 1929. Araratella Abrahamian, Plodowski, et Sartenaer, 1975 within the subfamily Araratellinae Erlanger, 1986 is referred to the family Septalariidae Havlicek, 1960 of the same superfamily. The position of Rariella Zhang, 1981, Yingtangella Bai et Ying, 1977, Momarhynchus Baranov et Sartenaer, 1996 in the order Rhynchonellida remains controversial. The punctation and exopunctation is found to arise parallel in different rhynchonellid evolutionary branches after the Frasnian-Famennian mass extinction.  相似文献   

10.
A comprehensive study of the anatomy, ecology and distribution of the orthurethran genus Draparnaudia confirms its family-group status, and suggests a probable sister-group relationship with another Pacific family, the Partulidae; its previous position as a subfamily of the Enidae is refuted. Draparnaudia is endemic to New Caledonia, but records from the New Hebrides are thought to result from introductions. A total of six species are recognized in the taxonomic revision, including two new species. Spermatophores are recorded for the first time.  相似文献   

11.
12.
Adult trematodes of the genus Gonocerca Manter, 1925, are parasites of marine fishes. Identification of the phylogenetic positions and a revision of the taxonomic status of the subfamily Gonocercinae Skrjabin et Guschanskaja, 1955 (Derogenidae) are the main purposes of this research article. Four Gonocerca species were used in the study, including the type-species G. phycidis Manter, 1925. Molecular phylogenetic analysis, based on partial sequences of 28S rRNA gene, revealed that Gonocerca spp. are phylogenetically distant from other hemiuroid trematodes, including Derogenes varicus (Müller, 1784), representative of the type-genus of the family Derogenidae. The taxonomic rank of Gonocercinae should be raised to the family level. The generic composition of the family Gonocercidae Skrjabin et Guschanskaja, 1955 stat. nov., requires further clarification as the molecular data do not support the inclusion of the genus Hemipera Nicoll, 1913, in this family.  相似文献   

13.
The evolutionary relationships among members of the cetacean family Delphinidae, the dolphins, pilot whales and killer whales, are still not well understood. The genus Sotalia (coastal and riverine South American dolphins) is currently considered a member of the Stenoninae subfamily, along with the genera Steno (rough toothed dolphin) and Sousa (humpbacked dolphin). In recent years, a revision of this classification was proposed based on phylogenetic analysis of the mitochondrial gene cytochrome b, wherein Sousa was included in the Delphininae subfamily, keeping only Steno and Sotalia as members of the Stenoninae subfamily. Here we investigate the phylogenetic placement of Sotalia using two mitochondrial genes, six autosomal introns and four Y chromosome introns, providing a total of 5,196 base pairs (bp) for each taxon in the combined dataset. Sequences from these genomic regions were obtained for 17 delphinid species, including at least one species from each of five or six currently recognized subfamilies plus five odontocete outgroup species. Maximum Parsimony, Maximum Likelihood and Bayesian phylogenetic analysis of independent (each fragment) and combined datasets (mtDNA, nuDNA or mtDNA+nuDNA) showed that Sotalia and Sousa fall within a clade containing other members of Delphininae, exclusive of Steno. Sousa was resolved as the sister taxon to Sotalia according to analysis of the nuDNA dataset but not analysis of the mtDNA or combined mtDNA+nuDNA datasets. Based on the results from our multi-locus analysis, we offer several novel changes to the classification of Delphinidae, some of which are supported by previous morphological and molecular studies.  相似文献   

14.
The taxonomic concepts of Blapimorpha and Opatrinae (informal and traditional, morphology‐based groupings among darkling beetles) are tested using molecular phylogenetics and a reassessment of larval and adult morphology to address a major phylogeny‐classification gap in Tenebrionidae. Instead of a holistic approach (family‐level phylogeny), this study uses a bottom‐up strategy (tribal grouping) in order to define larger, monophyletic lineages within Tenebrioninae. Sampling included representatives of 27 tenebrionid tribes: Alleculini, Amarygmini, Amphidorini, Blaptini, Bolitophagini, Branchini, Cerenopini, Coniontini, Caenocrypticini, Dendarini, Eulabini, Helopini, Lagriini, Melanimini, Opatrini, Pedinini, Phaleriini, Physogasterini, Platynotini, Platyscelidini, Praociini, Scaurini, Scotobiini, Tenebrionini, Trachyscelini, Triboliini and Ulomini. Molecular analyses were based on DNA sequence data from four non‐overlapping gene regions: carbamoyl‐phosphate synthetase domain of rudimentary (CAD) (723 bp), wingless (wg) (438 bp) and nuclear ribosomal 28S (1101 bp) and mitochondrial ribosomal 12S (363 bp). Additionally, 15 larval and imaginal characters were scored and subjected to an ancestral state reconstruction analysis. Results revealed that Amphidorini, Blaptini, Dendarini, Pedinini, Platynotini, Platyscelidini and Opatrini form a clade which can be defined by the following morphological features: adults—antennae lacking compound/stellate sensoria; procoxal cavities externally and internally closed, intersternal membrane of abdominal ventrites 3–5 visible; paired abdominal defensive glands present, elongate, not annulated; larvae—prolegs enlarged (adapted for digging); ninth tergite lacking urogomphi. To accommodate this monophyletic grouping (281 genera and ~4000 species), the subfamily Blaptinae sens. nov. is resurrected. Prior to these results, all of the tribes within Blaptinae were classified within the polyphyletic subfamily Tenebrioninae. The non‐monophyletic nature of Terebrioninae has already been postulated by previous authors, yet no taxonomic decisions were made to fix its status. The reinstatement of Blaptinae, which groups ~50% of the former Tenebrioninae, helps to clarify phylogenetic relations among the whole family and is the first step towards a complete higher‐level revision of Tenebrionidae. The Central Asian tribe Dissonomini (two genera, ~30 species) was not included in Blaptinae due to a lack of representatives in the performed phylogenetic analyses; however, based on morphological features, the tribe is listed as a potential addition to the subfamily.  相似文献   

15.
鹂雀(Linurgus olivaceus)是非洲热带森林中一种独特的鸣禽,为鹂雀属(Linurgus)的惟一物种。在已有的研究中,通过对鹂雀和雀形目现存鸟类中每个科及亚科至少一个物种的线粒体DNA序列测定,分析了鹂雀与其它现存雀形目鸟类的系统发生关系;在遗传上,对鹂雀与金丝雀、金翅雀及燕雀亚科其它鸟类亦有比较研究。本研究共使用了燕雀亚科83种鸟类,重点对该亚科的系统发生进行了修订。使用贝叶斯法构建了系统发生树,结果表明:鹂雀属于燕雀亚科,系统发生树中聚在金翅雀族(Carduelini),与金丝雀属(Serinus)、金翅雀属(Carduelis)及交嘴雀属(Loxia)的种类形成一组;在系统发生中,鹂雀可能是一个基部物种,它同金丝雀属和金翅雀属鸟类一同进化并分歧出来。在本研究中未能涉及的一些已灭绝种类,可能与鹂雀有着较近的遗传学关系。另一方面,研究也表明锡嘴雀(Coccotharustes coccothraustes)肯定包括在欧亚蜡嘴雀(蜡嘴雀属Eophona和拟蜡嘴雀属Mycerobas)中,美洲的朱雀(Carpodacus)可能是从亚洲种类分歧出来并经过进化辐射形成。  相似文献   

16.
Up to the present, the genus Leptostichaeus has been considered as belonging to subfamily Lumpeninae. A series of characters was analyzed for family and subfamily diagnostics within the group Stichaeidae. It was found that, in combination of all examined characters, the genus Leptostichaeus is either similar to Azygopterus or occupies an intermediate position between the latter and other members of the family Stichaeidae. The genus Leptostichaeus is transferred into the group Azygopterinae, which is revalidated as a subfamily within the family Stichaeidae.  相似文献   

17.
Phylogeny and classification of the Culicidae (Diptera)   总被引:3,自引:0,他引:3  
The generic relationships and higher classification of the family Culicidae are examined on the basis of a phylogenetic analysis. New and traditional morphological characters studied and compared throughout the Culicidae resulted in the acquisition of character data relative to the majority of species within each genus. Polymorphisms and morphological observations are discussed and additional information and illustrations are provided for the majority of characters and their character states. The analysis of seventy-three adult, pupal and fourth-instar larval characters coded for the thirty-eight currently recognized genera of mosquitoes resulted in relationships and groupings which differ significantly from traditional hypotheses. The analysis supports the monophyly of the subfamily Anophelinae and the tribes Culicini and Sabethini. The Anophelinae form the most basal clade of the family. The results indicate that Aedini is a paraphyletic assemblage with respect to the Mansoniini, each of which is monophyletic in itself. The Aedini + Mansoniini form a sister group to the Culicini + Sabethini, with the Aedini and the Culicini placed in ancestral relationships to the Mansoniini and the Sabethini, respectively. Based on the topography of generic relationships among more 'generalized' mosquitoes, the boundaries and relationships of the tribes Aedeomyiini, Uranotaeniini, Ficalbiini, Hodgesiini, Orthopodomyiini and Culisetini appear to be problematic. Relationships between genera of the tribe Aedini are generally poorly resolved due to a significant amount of polymorphism, especially within the genus Aedes as currently defined. There is no support for separate subfamily recognition for the genus Toxorhynchites , which is downgraded to tribal status as a result of the analysis. The results are discussed in relation to previous hypotheses based on subjective inference and cladistic analyses.  相似文献   

18.
The taxonomic framework of Ligophorus, monogenean specialists of the gills of grey mullets (Mugilidae), is evaluated and its interspecific relationships are assessed for the first time using molecular data. The position of Ligophorus within the paraphyletic Ancyrocephalinae is re-assessed based on newly sequenced species. Furthermore, the relationship between morphometric and genetic interspecific similarities is evaluated. Partial 28S and complete ITS1 rDNA sequences from representatives of 14 of the 16 nominal species of Ligophorus from the Mediterranean, Black and Azov Seas were analysed together with published sequences of members of the Dactylogyridae. The phylogenetic analyses of the Dactylogyridae (i) confirmed the position of Ligophorus within the marine Ancyrocephalinae; (ii) revealed a sister relationship between Ergenstrema and Ligophorus, whose species are all exclusive parasites of grey mullets; and (iii) substantiated the affinities of Ergenstrema with the marine Ancyrocephalinae. The phylogenetic analysis restricted to Ligophorus confirmed the distinct status of the included species. The ITS1 region provided the highest divergence between species and phylograms with the strongest branch support. Both the 28S and ITS1 phylograms revealed two main clades. One included species from hosts with Mediterranean and NE Atlantic distribution and another was formed by species parasitising several Liza spp., including Lz. haematocheilus from the Northwestern Pacific, and Mugil cephalus, which suggests an origin outside the Mediterranean for the latter clade. The phylogenetic evidence presented herein indicated that a combination of host-switching and lineage duplication events accounted for the diversification of this genus in the Mediterranean basin. The agreement between molecular and morphological interspecific similarities observed in Ligophorus supports the validity of morphometric characters used for species identification.  相似文献   

19.
Treefrogs of the family Hyperoliidae are distributed in Africa, Madagascar and the Seychelles. In this study, their phylogeny was studied using sequences of fragments of the mitochondrial 16S and 12S rRNA and cytochrome b genes. The molecular data strongly confirmed monophyly of the subfamily Hyperoliinae but indicated that the genus Leptopelis (subfamily Leptopelinae) is more closely related to species of the African family Astylosternidae. The Seychellean genus Tachycnemis was the sister group of the Malagasy Heterixalus in all molecular analyses; this clade was deeply nested within the Hyperoliinae. A re-evaluation of the morphological data did not contradict the sister group relationships of these two genera. The subfamily Tachycneminae is therefore considered as junior synonym of the Hyperoliinae. In addition, the molecular analysis did not reveal justification for a subfamily Kassininae. Biogeographically, the origin of Malagasy hyperoliids may not be well explained by Mesozoic vicariance in the context of Gondwana breakup, as indicated by the low differentiation of Malagasy hyperoliids to their African and Seychellean relatives and by analysis of current distribution patterns.  相似文献   

20.
Eulophidae is a large and biologically varied family of parasitoid wasps, traditionally split into four subfamilies; Elasmidae is a uniform (single genus) and morphologically distinct family of wasps that are thought to be related to Eulophidae. The D2 region of the 28S rDNA gene (≈ 560 bp) of eighty‐seven species of eulophid, three species of elasmid and sixteen outgroup species in five families was sequenced. Cladograms were constructed, and the results compared with conclusions drawn from morphological studies. The gene was most informative at the level of subfamily and tribe. The monophyly of both Eulophinae and Tetrastichinae is supported; that of Entedoninae and Euderinae is less clear. Results indicate that Eulophinae is a derived group within Eulophidae, rather than an ancestral group as previously thought, and that Elasmus, the sole genus of Elasmidae, belongs within this subfamily. The tribes of Eulophinae are reassessed and only three accepted: Eulophini (including Euplectrini and Elachertini), Elasmini and Cirrospilini LaSalle trib.n. for Bou?ek's Ophelimini with Ophelimus and Australsecodes excluded. Three small Australian tribes, Anselmellini, Ophelimini and Platytetracampini, are removed from Eulophinae and Entedoninae, respectively, but their exact relationships and subfamily status cannot as yet be decided. Another tribe, Keryini, known from a single Australian genus, is excluded from both Eulophinae and Eulophidae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号