首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Guo RT  Chou LJ  Chen YC  Chen CY  Pari K  Jen CJ  Lo SJ  Huang SL  Lee CY  Chang TW  Chaung WJ 《Proteins》2001,43(4):499-508
Rhodostomin (Rho) is a snake venom protein isolated from Calloselasma rhodostoma. Rho is a disintegrin that inhibits platelet aggregation by blocking the binding of fibrinogen to the integrin alpha(IIb)beta3 of platelets. Rho produced in Escherichia coli inhibited platelet aggregation with a K(I) value of 263 nM. Although functional, Rho produced in E. coli is misfolded based on our 2D and 3D NMR studies. In order to correct the folding problem, Rho was expressed in Pichia pastoris. The recombinant Rho expressed in P. pastoris inhibited platelet aggregation with a resulting K(I) value of 70 nM. This is the same potency as that of native Rho. CD analysis showed that the secondary structures of Rho are pH-independent and contain 3.5-7.9% alpha-helix, 48.2-50.5% beta-structures, and 42.3-47% coil. The sequential assignment and structure analysis of Rho were obtained using 2D and 3D 15N-edited NMR spectra. These results provide the first direct evidence that highly disulfide-bonded disintegrin can be expressed in P. pastoris with the correct fold. This evidence may serve as the basis for exploring the structure and function relationships as well as the dynamics of disintegrin and its variants.  相似文献   

2.
Biotin carboxylase from Escherichia coli catalyzes the ATP-dependent carboxylation of biotin and is one component of the multienzyme complex acetyl-CoA carboxylase, which catalyzes the committed step in long-chain fatty acid synthesis. Comparison of the crystal structures of biotin carboxylase in the absence and presence of ATP showed a central B-domain closure when ATP was bound. Peptidic NH groups from two active site glycine residues (Gly165 and Gly166) that form hydrogen bonds to the phosphate oxygens of ATP were postulated to act as a "trigger" for movement of the B-domain. The function of these two glycine residues in the catalytic mechanism was studied by disruption of the hydrogen bonds using site-directed mutagenesis. Both single (G165V) and (G166V) and double mutants (G165V-G166V) were constructed. The mutations did not affect the maximal velocity of a partial reaction, the bicarbonate-dependent ATPase activity. This suggests that the peptidic NH groups of Gly165 and Gly166 are not triggers for domain movement. However, the K(m) values for ATP for each of the mutants was increased over 40-fold when compared with wild-type indicating the peptidic NH groups of Gly165 and Gly166 play a role in binding ATP. Consistent with ATP binding, the maximal velocity for the biotin-dependent ATPase activity (i.e. the complete reaction) was decreased over 100-fold suggesting the mutations have misaligned the reactants for optimal catalysis. Molecular dynamics studies confirm perturbation of the hydrogen bonds from the mutated residues to ATP, whereas the double mutant exhibits antagonistic effects such that hydrogen bonding from residues 165 and 166 to ATP is similar to that in the wild-type. Consistent with the site-directed mutagenesis results the molecular dynamics studies show that ATP is misaligned in the mutants.  相似文献   

3.
吴毓  赵宝昌  王继红  赵鹏  吴妍宁  崔秀云 《遗传》2005,27(2):249-254
人胎盘核糖核酸酶抑制因子(HRI)是一种存在于细胞浆中的50 kDa的酸性蛋白质,富含亮氨酸和半胱氨酸。作为胞浆蛋白可保护细胞不受外来的胰RNase的侵袭。HRI有32个半胱氨酸残基,且多数半胱氨酸残基是成对的并在序列上相连。文章用丙氨酸同时取代cys328/cys329,并将此双突变的HRI的cDNA片段构建于质粒pPIC9K,电击转化入毕赤酵母(Pichia pastoris)GS115中,进行分泌型表达。对表达产物进行亲和层析纯化及抗氧化活性检测。实验结果表明,双点突变后的HRI对RNase A的亲和力几乎没有影响,但其抗氧化能力却增加7~9倍。此种抗氧化能力的提高可能是因为在cys328-cys329之间不能形成二硫键而稳定了HRI的三维结构所致。  相似文献   

4.
A potential role in disulfide bond formation in the intracellular proteins of thermophilic organisms has recently been attributed to a new family of protein disulfide isomerase (PDI)-like proteins. Members of this family are characterized by a molecular mass of about 26kDa and by two Trx folds, each comprising a CXXC active site motif. We report on the functional and structural characterization of a new member of this family, which was isolated from the thermophilic bacterium Aquifex aeolicus (AaPDO). Functional studies have revealed the high catalytic efficiency of this enzyme in reducing, oxidizing and isomerizing disulfide bridges. Site-directed mutagenesis experiments have suggested that its two active sites have similar functional properties, i.e. that each of them imparts partial activity to the enzyme. This similarity was confirmed by the analysis of the enzyme crystal structure, which points to similar geometrical parameters and solvent accessibilities for the two active sites. The results demonstrated that AaPDO is the most PDI-like of all prokaryotic proteins so far known. Thus, further experimental studies on this enzyme are likely to provide important information on the eukaryotic homologue.  相似文献   

5.
大多数蛋白质的形成过程主要由合成前体蛋白和合成功能蛋白两个步骤组成.在这个过程中,前导肽能够辅助蛋白质折叠或抑制它的活性.前导肽作为脂肪酶结构中重要的一段多肽链,通常作为分子内分子伴侣来辅助脂肪酶的折叠,同时该序列上包括糖基化位点在内的一些特殊位点,对酶的活性、极端环境稳定性、甲醇耐受性和底物特异性等性质具有重要影响....  相似文献   

6.
Chen CY  Cheng CH  Chen YC  Lee JC  Chou SH  Huang W  Chuang WJ 《Proteins》2006,62(1):279-287
We report the culture conditions for successful amino-acid-type selective (AATS) isotope labeling of protein expressed in Pichia pastoris (P. pastoris). Rhodostomin (Rho), a six disulfide-bonded protein expressed in P. pastoris with the correct fold, was used to optimize the culture conditions. The concentrations of [alpha-15N] selective amino acid, nonlabeled amino acids, and ammonium chloride, as well as induction time, were optimized to avoid scrambling and to increase the incorporation rate and protein yield. The optimized protocol was successfully applied to produce AATS isotope-labeled Rho. The labeling of [alpha-15N]Cys has a 50% incorporation rate, and all 12 cysteine resonances were observed in HSQC spectrum. The labeling of [alpha-15N]Leu, -Lys, and -Met amino acids has an incorporation rate greater than 65%, and the expected number of resonances in the HSQC spectra were observed. In contrast, the labeling of [alpha-15N]Asp and -Gly amino acids has a low incorporation rate and the scrambling problem. In addition, the culture condition was successfully applied to label dendroaspin (Den), a four disulfide-bonded protein expressed in P. pastoris. Therefore, the described condition should be generally applicable to other proteins produced in the P. pastoris expression system. This is the first report to present a protocol for AATS isotope labeling of protein expressed in P. pastoris for NMR study.  相似文献   

7.
The intrinsic component of the standard free energy change for the formation of a disulfide bond in a protein molecule is compared to that for an analogous chemical reaction. The former reaction, which represents theintramolecular formation of a disulfide bond in a protein molecule from a cysteine group containing a mixed disulfide bond with glutathione, and a free cysteine residue, is a unimolecular reaction. In contrast, its chemical analogue is a bimolecular reaction, and corresponds to theintermolecular disulfide interchange between a mixed disulfide-bonded compound between a cysteine residue and glutathione, and a free cysteine molecule. The difference in the intrinsic free energy of the above two reactions is estimated by two different approaches. First, a theoretical estimate of the magnitude of the difference in free energy of the two reactions (for a standard state of 1 M) is obtained using a gas-phase statistical thermodynamic approach, which indicates that the intramolecular reaction is energetically favored over its intermolecular counterpart by as much as 15.6 kcal/mole. For comparison, an experimentally derived value is also obtained, using experimental data from a study by Konishi et al. of the regeneration of the protein ribonuclease A (RNase A) from its reduced form by reduced and oxidized glutathiones. The intrinsic component of the free energy change of the intramolecular reaction, as it occurs in the protein molecule, is obtained from such experimental data by accounting explicitly for the free energy change (assumed to be solely an entropy change) pertaining to the conformational changes (ring closure) that the protein molecule undergoes in the course of the reaction. On the basis of the value derived from such an experimental approach, the intramolecular reaction is also energetically more favorable as compared to its intermolecular analogue, but only by a difference of 2.3 kcal/mole (for a standard state of 1 M). The large apparent discrepancy between the two values estimated from the theoretical and experimental approaches is rationalized by the postulation of several additional factors not inherent in the gas-phase theoretical estimate, such as dehydration and intramolecular hydrogen-bonding effects, which can largely compensate for the otherwise favorable energetics of the intramolecular reaction.  相似文献   

8.
9.
PDI1 is the essential gene encoding protein disulfide isomerase in yeast. The Saccharomyces cerevisiae genome, however, contains four other nonessential genes with homology to PDI1: MPD1, MPD2, EUG1, and EPS1. We have investigated the effects of simultaneous deletions of these genes. In several cases, we found that the ability of the PDI1 homologues to restore viability to a pdi1-deleted strain when overexpressed was dependent on the presence of low endogenous levels of one or more of the other homologues. This shows that the homologues are not functionally interchangeable. In fact, Mpd1p was the only homologue capable of carrying out all the essential functions of Pdi1p. Furthermore, the presence of endogenous homologues with a CXXC motif in the thioredoxin-like domain is required for suppression of a pdi1 deletion by EUG1 (which contains two CXXS active site motifs). This underlines the essentiality of protein disulfide isomerase-catalyzed oxidation. Most mutant combinations show defects in carboxypeptidase Y folding as well as in glycan modification. There are, however, no significant effects on ER-associated protein degradation in the various protein disulfide isomerase-deleted strains.  相似文献   

10.
Understanding protein stability requires characterization of structural determinants of the folded and unfolded states. Many proteins are capable of populating partially folded states under specific solution conditions. Occasionally, coexistence of the folded and an unfolded state under non- or mildly denaturing conditions can be observed by NMR, allowing us to structurally probe these states under identical conditions. Here we report on a destabilized mutant of the B1 domain of protein G (GB1) whose equilibrium unfolding was systematically investigated. Backbone amide residual dipolar couplings (RDCs), the tryptophan Nepsilon-H resonance and the amide nitrogen transverse relaxation rates (R2s) for varying pH values and different temperatures were measured. The backbone amide RDCs indicate that prior to complete unfolding, two melting hot spots are formed at the turn around T11, L12 and K13 and the N terminus of the helix at A24 and T25. The RDCs for the low pH, thermally unfolded state of GB1 are very small and do not indicate the presence of any native-like structure. Amide nitrogen transverse relaxation rates for GB1 in the folded state at different temperatures exhibit large contributions from exchange processes and the associated dynamics display considerable heterogeneity. Our data provide clear evidence for intermediate conformations and multi-state equilibrium un/folding for this GB1 variant.  相似文献   

11.
12.
Enhancing multiple disulfide bonded protein folding in a cell-free system   总被引:6,自引:0,他引:6  
A recombinant plasminogen activator (PA) protein with nine disulfide bonds was expressed in our cell-free protein synthesis system. Due to the unstable and reducing environment in the initial E. coli-based cell-free system, disulfide bonds could not be formed efficiently. By treating the cell extract with iodoacetamide and utilizing a mixture of oxidized and reduced glutathione, a stabilized redox potential was optimized. Addition of DsbC, replacing polyethylene glycol with spermidine and putrescine to create a more natural environment, adding Skp, an E. coli periplasmic chaperone, and expressing PA at 30 degrees C increased the solubility of the protein product as well as the yield of active PA. Taken together, the modifications enabled the production of more than 60 microg/mL of bioactive PA in a simple 3-h batch reaction.  相似文献   

13.
The stable strain of methylotrophic yeast Pichia pastoris secreting human serum albumin into cultural medium was obtained. Optimal conditions for expression of the protein were determined. We characterized the recombinant protein by mass spectrometry and circular dichroism and analyzed its catalytic activity.  相似文献   

14.
Proteins that switch conformations in response to a signaling event (e.g., ligand binding or chemical modification) present a unique solution to the design of reagent-free biosensors as well as molecules whose biological functions are regulated in useful ways. The principal roadblock in the path to develop such molecules is that the majority of natural proteins do not change conformation upon binding their cognate ligands or becoming chemically modified. Herein, we review recent protein engineering efforts to introduce switching properties into binding proteins. By co-opting natural allosteric coupling, joining proteins in creative ways and formulating altogether new switching mechanisms, researchers are learning how to coax conformational changes from proteins that previously had none. These studies are providing some answers to the challenging question: how can one convert a lock-and-key binding protein into a molecular switch?  相似文献   

15.
Mutants of the methanol-utilizing yeast Pichia pastoris and the alkane-utilizing yeast Yarrowia lipolytica defective in the orthologue of UGT51 (encoding sterol glucosyltransferase) were isolated and compared. These mutants do not contain the specific ergosterol derivate, ergosterol glucoside. We observed that the P. pastoris UGT51 gene is required for pexophagy, the process by which peroxisomes containing methanol-metabolizing enzymes are selectively shipped to and degraded in the vacuole upon shifting methanol-grown cells of this yeast to glucose or ethanol. PpUGT51 is also required for other vacuole related processes. In contrast, the Y. lipolytica UGT51 gene is required for utilization of decane, but not for pexophagy. Thus, sterol glucosyltransferases play different functional roles in P. pastoris and Y. lipolytica.  相似文献   

16.
A potential vaccine candidate, Necator americanus secretory protein (Na-ASP1), against hookworm infections, has been expressed in Pichia pastoris. Na-ASP1, a 45 kDa protein containing 20 cysteines, was directed outside the cell by fusing the protein to the preprosequence of the alpha-mating factor of Saccharomyces cerevisiae. Most of the protein produced by single copy clones was secreted outside the cell. However, increasing gene copy number of Na-ASP1 protein in P. pastoris saturated secretory capacity and therefore, decreased the amount of secreted protein in clones harboring multiple copies of Na-ASP1 gene. Overexpression of the endoplasmic reticulum (ER) resident, homologous chaperone protein, protein disulfide isomerase (PDI) was able to increase the secretion of (Na-ASP1) protein in high copy clones. The effect of PDI levels on secretion of Na-ASP1 protein was examined in clones with varying copy number of PDI gene. Increase in secreted Na-ASP1 secretion is correlated well with the PDI copy number. Increasing levels of PDI also increased overall Na-ASP1 protein production in all the clones. Nevertheless, there was still accumulation of intracellular Na-ASP1 protein in P. pastoris clones over-expressing Na-ASP1 and PDI proteins.  相似文献   

17.
来源于灰盖鬼伞长度为1 092 bp的CiP目的基因与AOX1启动子一起整合进酵母染色体基因组中。重组蛋白CiP在酿酒酵母信号肽的引导下成功分泌到胞外,质谱鉴定为目的蛋白,成功在毕赤酵母中表达灰盖鬼伞过氧化物酶(CiP)。将伴侣蛋白内质网氧化还原酶1(Ero1)、二硫键异构酶(PDI)分别单独及同时转入CiP酵母受体菌中,研究它们对CiP在毕赤酵母中表达的影响。结果表明:在摇瓶中,相对于无分子伴侣的菌株,单独整合PDI及同时整合Ero1、PDI菌株的CiP酶活分别提高了2.43和2.62倍,活力达到316 U/m L和340 U/m L。挑选同时整合Ero1、PDI伴侣蛋白的CiP菌株,5 L发酵罐进行高密度发酵,酶活最高达到3 379 U/m L,比摇瓶提高约10倍。本实验结果较目前已报道的1 200 U/m L已是最高水平。  相似文献   

18.
Streptavidin is widely used as an analytical tool and affinity tag together with biotinylated surfaces or molecules. We report for the first time a simple strategy that yields high biomass of a Pichia pastoris strain containing a methanol induced core streptavidin (cStp) gene. Three factors were evaluated for biomass production: glycerol concentration, aeration, and feed flow rates in a bioreactor. Recycling of recombinant cells, either free or immobilized, was investigated during induction. Concentration of 2.0 M glycerol, feeding flow rate of 0.11 mL min?1, and aeration by air injection dispersed with a porous stone combined with agitation at 500 rpm were the set of conditions resulting into maximum biomass yield (150 g L?1). These parameters yielded 4.0 g L?1 of cStp, after 96 h of induction. Recombinant biomass was recycled twice before being discarded, which can reduce production costs and simplify the process. Immobilized P. pastoris biomass produced 2.94 and 1.70 g L?1 of cStp in the first and second induction cycle, respectively. Immobilization and recycling of recombinant P. pastoris biomass opens new possibilities as a potential strategy to improve volumetric productivity for heterologous protein expression. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

19.
The structure in the extracellular, intradiscal domain of rhodopsin surrounding the Cys110–Cys187 disulfide bond has been shown to be important for correct folding of this receptor in vivo. Retinitis pigmentosa misfolding mutants of the apoprotein opsin (such as P23H) misfold, as defined by a deficiency in ability to bind 11-cis retinal and form rhodopsin. These mutants also possess an abnormal Cys185–Cys187 disulfide bond in the intradiscal domain. Here, by mutating Cys185 to alanine, we eliminate the possibility of forming this abnormal disulfide bond and investigate the effect of combining the C185A mutation with the retinitis pigmentosa mutation P23H. Both the P23H and P23H/C185A double mutant suffer from low expression and poor 11-cis retinal binding. Our data suggest that misfolding events occur that do not have an absolute requirement for abnormal Cys185–Cys187 disulfide bond formation. In the detergent-solubilised, purified state, the C185A mutation allows formation of rhodopsin at wild-type (WT) levels, but has interesting effects on protein stability. C185A rhodopsin is less thermally stable than WT, whereas C185A opsin shows the same ability to regenerate rhodopsin in detergent as WT. Purified C185A and WT opsins, however, have contrasting 11-cis retinal binding kinetics. A high proportion of C185A opsin binds 11-cis retinal with a slow rate that reflects a denatured state of opsin reverting to a fast-binding, open-pocket conformation. This slower rate is not observed in a stabilising lipid/detergent system, 1,2-dimyristoyl-sn-glycero-3-phosphocholine/Chaps, in which C185A exhibits WT (fast) retinal binding. We propose that the C185A mutation destabilises the open-pocket conformation of opsin in detergent resulting in an equilibrium between correctly folded and denatured states of the protein. This equilibrium can be driven towards the correctly folded rhodopsin state by the binding of 11-cis retinal.  相似文献   

20.
The formation of native disulfide bonds during in vitro protein folding can be limiting in obtaining biologically active proteins. Thus, optimization of redox conditions can be critical in maximizing the yield of renatured, recombinant proteins. We have employed a folding model, that of the beta subunit of human chorionic gonadotropin (hCG- beta), to investigate in vitro oxidation conditions that facilitate the folding of this protein, and have compared the in vitro rates obtained with the rate of folding that has been observed in intact cells. Two steps in the folding pathway of hCG-beta were investigated: the rate-limiting events in the folding of this protein, and the assembly of hCG-beta with, hCG-alpha. The rates of these folding events were determined with and without protein disulfide isomerase (PDI) using two different types of redox reagents: cysteamine and its oxidized equivalent, cystamine, and reduced and oxidized glutathione. Rates of the rate-limiting folding events were twofold faster in cysteamine/cystamine redox buffers than in glutathione buffers in the absence of PDI. Optimal conditions for hCG-beta folding were attained in a 2 mM glutathione buffer, pH 7.4, that contained 1 mg/mL PDI and in 10muM cysteamine/cystamine, pH 8.7, without PDI. Under these conditions, the half-time of the ratelimiting folding event was 16 to 20 min and approached the rate observed in intact cells (4 to 5 min). Moreover, folding of the beta subunit under these conditions yields a functional protein, based on its ability to assemble with the alpha subunit. The rates of assembly of hCG-beta with hCG-alpha in the cysteamine/cystamine or glutathione/PDI redox buffers were comparable (t(1/2/sb> = 9 to 12 min)). These studies show that rates of folding and assembly events that involve disulfide bond formation can be optimized by a simple buffer system composed of cysteamine and cystamine. (c) 1994 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号