首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lysine-nitrile derivatives having a trisubstituted benzene, which belongs to a new chemical class, were prepared and tested for inhibitory activities against plasmin and the highly homologous plasma kallikrein and urokinase. The use of the novel chemotype in the development of plasmin inhibitors has been demonstrated by derivatives of compound 9.  相似文献   

2.
Eight peptides of the general H-D-Ser-AA-Arg-OH formula, where AA?=?phenylglycine, phenylalanine, homophenylalanine, cyclohexylglycine, cyclohexylalanine, homocyclohexylalanine, α-methylphenylalanine and 1-aminocyclohexyl carboxylic acid were obtained and tested for their effect on the amidolytic activities of urokinase, thrombin, trypsin, plasmin, t-PA and kallikrein. We tested the hemolytic activity of the peptides against porcine erythrocytes and the antitumor activity against the human breast cancer cells, standard MCF-7 and estrogen-independent MDA-MB-231. The most active compounds were H-D-Ser-Chg-Arg-OH towards thrombin and H-D-Ser-Phg-Arg-OH towards plasmin with Ki value 5.02 μM and 5.7 μM, respectively.  相似文献   

3.
Plasma kallikrein was found to be a good activator of pro-urokinase, the inactive zymogen form of urokinase. The complete activation of pro-urokinase by plasma kallikrein was obtained in 2 h with an enzyme/substrate weight ratio of 1/30. The rate of activation of pro-urokinase by plasma kallikrein was comparable to that catalyzed by plasmin and trypsin. The rate of activation of pro-urokinase by factor XIIa was approximately one-seventh of that by plasma kallikrein. The activation of the zymogen was due to the cleavage of a single internal peptide bond, resulting in the conversion of a single chain pro-urokinase (Mr = 55,000) into two-chain urokinase (Mr = 33,000 and 22,000), and these two chains were linked by a disulfide bond(s). These results indicate an important role of plasma kallikrein for the activation of pro-urokinase in the factor XII-dependent intrinsic pathway of fibrinolysis. Thrombin also converted pro-urokinase to a two-chain form that was not activatable by plasmin, plasma kallikrein, and factor XIIa. Thrombin specifically cleaved the Arg 156-Phe 157 bond which is located 2 residues prior to the activation site of Lys 158-Ile 159.  相似文献   

4.
p-Guanidinobenzoate derivates were prepared and their inhibitory effects on trypsin, plasmin, pancreatic kallikrein, plasma kallikrein, thrombin, C1r and C1 esterase were examined. Among the various inhibitors tested, 6'-amidino-2-naphthyl-4-guanidinobenzoate dihydrochloride, 4-(beta-amidinoethenyl)phenyl-4-guanidinobenzoate dimethanesulfonate and 4-amidino-2-benzoylphenyl-4-guanidinobenzoate dimethanesulfonate were the most effective inhibitors of trypsin, plasmin, pancreatic kallikrein. plasma kallikrein and thrombin and they strongly inhibited the esterolytic activities of C1r and C1 esterase, and then strongly inhibited complement-mediated hemolysis.  相似文献   

5.
Plasmin plays important roles in various physiological systems. The identification of inhibitors controlling its regulation represents a promising drug-discovery challenge. To develop selective inhibitors of plasmin, structural information of the binding modes is crucial. Here, a computational docking study was conducted to provide structural insight into plasmin subsite interactions with substrates/inhibitors. Predicted binding modes of two peptide-substrates (D/L-Ile-Phe-Lys), and potent and weak inhibitors (YO-2 and PKSI-527) suggested non-prime and prime subsite interactions relevant to recognition by plasmin. Predicted binding modes also correlated well with the experimental structure–activity relationships for plasmin substrates/inhibitors, namely the differences of KM values between the D- and L-peptide-substrates and inhibitory potencies of YO-2 and PKSI-527. In particular, interaction observed at a hydrophobic pocket near S2 and at a tunnel-shaped hydrophobic S1′ was strongly suggested to be significantly involved in tight binding of inhibitors to plasmin. Our present findings may aid in the design of potent and selective plasmin inhibitors.  相似文献   

6.
Tripeptides of the general X-SO2-d-Ser-AA-Arg-CO-Y formula, where X = α-tolyl, p-tolyl, 2,4,6-triisopropylphenyl; AA = alanine, glycine, norvaline and Y = OH, NH-(CH2)5NH2 were obtained and tested for their effect on the amidolytic activities of urokinase, thrombin, trypsin, plasmin, t-PA and kallikrein. The most active compound towards urokinase was PhCH2SO2-d-Ser-Gly-Arg-OH with Ki value 5.4 μM and the most active compound toward thrombin was PhCH2SO2-d-Ser-NVa-Arg-OH with Ki value 0.82 μM. The peptides were nontoxic against porcine erythrocytes in vitro. PhCH2SO2-d-Ser-Gly-Arg-OH showed cytotoxic effect against DLD cell lines with IC50 values of 5 μM. For the highly selective determination of the interaction of some of the synthesised acids of tripeptides with urokinase and plasmin the Surface Plasmon Resonance Imaging sensor has been applied. These compounds bind to urokinase and plasmin in 0.05 mM concentration.  相似文献   

7.
The inhibition of plasmin, (EC 3.4.21.7), thrombin (EC 3.4.21.5), trypsin (EC 3.4.21.4) and chymotrypsin (EC 3.4.21.1) by antiplasmin, the recently described fast-reacting plasmin inhibitor of human plasma, was studied. To determine the quantitative importance of antiplasmin relative to the other plasma protease inhibitors, enzyme inhibition assays were performed on whole plasma and on plasma specifically depleted in antiplasmin, after addition of excess enzyme. Plasmin was the only enzyme for which the inhibitory capacity of antiplasmin-depleted plasma was lower than that of normal plasma. To determine the affinity of the enzymes for antiplasmin, as compared to the other inhibitors, various amounts of enzymes were added to normal plasma and the formation of enzyme-antiplasmin complexes studied by crossed immunoelectrophoresis using specific antisera against antiplasmin. Plasmin and trypsin, but not thrombin or chymotrypsin formed complexes with antiplasmin. It is concluded that antiplasmin is the only fast-reacting plasmin inhibitor of human plasma. It is also a fast-reacting inhibitor of trypsin but only accounts for a very small part of the fast-reacting trypsin-inhibitory activity of plasma. This can be explained by the low concentration of antiplasmin (1 muM) in normal plasma, compared to the other inhibitors (e.g. alpha1-antitrypsin: 40-80 muM).  相似文献   

8.
《The Journal of cell biology》1990,111(5):2183-2195
Polyclonal antibodies against plasminogen activator inhibitor type-I (PAI-1) caused rapid retraction and rounding of substrate-attached HT- 1080 cells. The kinetics and extent of antibody-mediated cell rounding were not dependent on either urokinase or plasmin activity. Cells adherent to vitronectin-coated substrates detached within 2 h of antibody addition. Cells adherent to fibronectin were unaffected by the antibodies. Immunoblotting of substrate-attached material indicated that HT-1080 cells deposited PAI-1 into vitronectin, but not fibronectin, dependent contacts. These data suggest that the antibody- mediated cell rounding resulted from a steric disruption of vitronectin- dependent adhesions, indicating that the binding site on vitronectin for PAI-1 is near, but does not overlap, the binding site for vitronectin receptor. The accumulation of PAI-1 into vitronectin- dependent adhesion sites correlated temporally with the preferential degradation of fibronectin from the substrate. HT-1080 cells adherent to either fibronectin or vitronectin were able to activate exogenous plasminogen to plasmin. Plasmin levels were increased 200% on cells adherent to fibronectin and 100% on cells adherent to vitronectin. In the presence of a neutralizing antibody against PAI-1, vitronectin adherent cells activated plasminogen to the same extent as fibronectin adherent cells. Plasmin levels of 200% above baseline were associated with retraction of cells from the substrate. The ability of vitronectin adherent cells to activate exogenous plasmin was completely blocked in the presence of neutralizing antibodies against urokinase. These data represent the first demonstration that vitronectin-associated PAI-1 regulates urokinase in focal contact areas.  相似文献   

9.
Three protein inhibitors of serine proteinases were isolated from the crude venom of the long-nosed viper Vipera ammodytes ammodytes by ion-exchange and gel chromatography. Two of them strongly inhibit trypsin (Ki = 3.4 X 10(-10) and 5.6 X 10(-10) M), while the third one primarily inhibits chymotrypsin (Ki = 4.3 X 10(-9) M). Their Mr values are close to 7000, and pI is 9.8 in both trypsin inhibitors and 10.0 in the chymotrypsin inhibitor. The N-terminal group in the former inhibitors is blocked; arginine is the N-terminal amino acid in the latter. Besides trypsin and alpha-chymotrypsin, the trypsin inhibitors also inhibit plasmin, human plasma kallikrein and porcine pancreatic kallikrein. The chymotrypsin inhibitor inhibits trypsin and human plasma kallikrein only weakly and does not inhibit plasmin and porcine pancreatic kallikrein. According to their properties, all three inhibitors belong to the Kunitz-pancreatic trypsin inhibitor family of inhibitors.  相似文献   

10.
The plasma clearance of neutrophil elastase, plasmin, and their complexes with human inter-alpha-trypsin inhibitor (I alpha I) was examined in mice, and the distribution of the proteinases among the plasma proteinase inhibitors was quantified in mixtures of purified inhibitors, in human or murine plasma, and in murine plasma following injection of purified proteins. The results demonstrate that I alpha I acts as a shuttle by transferring proteinases to other plasma proteinase inhibitors for clearance, and that I alpha I modulates the distribution of proteinase among inhibitors. The clearance of I alpha I-elastase involved transfer of proteinase to alpha 2-macroglobulin and alpha 1-proteinase inhibitor. The partition of elastase between these inhibitors was altered by I alpha I to favor formation of alpha 2-macroglobulin-elastase complexes. The clearance of I alpha I-plasmin involved transfer of plasmin to alpha 2-macroglobulin and alpha 2-plasmin inhibitor. Results of distribution studies suggest that plasmin binds to endothelium in vivo and reacts with I alpha I before transfer to alpha 2-macroglobulin and alpha 2-plasmin inhibitor. Evidence for this sequence of events includes observations that plasmin in complex with I alpha I cleared faster than free plasmin, that plasma obtained after injection of plasmin contained a complex identified as I alpha I-plasmin, and that a murine I alpha I-plasmin complex remained intact following injection into mice. Plasmin initially in complex with I alpha I more readily associated with alpha 2-plasmin inhibitor than did free plasmin.  相似文献   

11.
Swedberg JE  Harris JM 《Biochemistry》2011,50(39):8454-8462
Perioperative bleeding is a cause of major blood loss and is associated with increased rates of postoperative morbidity and mortality. To combat this, antifibrinolytic inhibitors of the serine protease plasmin are commonly used to reduce bleeding during surgery. The most effective and previously widely used of these is the broad range serine protease inhibitor aprotinin. However, adverse clinical outcomes have led to use of alternative serine lysine analogues to inhibit plasmin. These compounds suffer from low selectivity and binding affinity. Consequently, a concerted effort to discover potent and selective plasmin inhibitors has developed. This study used a noncombinatorial peptide library to define plasmin's extended substrate specificity and guide the design of potent transition state analogue inhibitors. The various substrate binding sites of plasmin were found to exhibit a higher degree of cooperativity than had previously been appreciated. Peptide sequences capitalizing on these features produced high-affinity inhibitors of plasmin. The most potent of these, Lys-Met(sulfone)-Tyr-Arg-H [KM(O(2))YR-H], inhibited plasmin with a K(i) of 3.1 nM while maintaining 25-fold selectivity over plasma kallikrein. Furthermore, 125 nM (0.16 μg/mL) KM(O(2))YR-H attenuated fibrinolysis in vitro with an efficacy similar to that of 15 nM (0.20 μg/mL) aprotinin. To date, this is the most potent peptide inhibitor of plasmin that exhibits selectivity against plasma kallikrein, making this compound an attractive candidate for further therapeutic development.  相似文献   

12.
Twenty peptide-4-methylcoumarin amides (MCA) were newly synthesized and tested as possible substrates for alpha-thrombin, factor Xa, kallikreins, urokinase, and plasmin. These fluorogenic peptides contained arginine-MCA as the carboxyl-terminus. Release of 7-amino-4-methylcoumarin was determined fluorometrically. Of these peptides, the following were found to be specific substrates for individual enzymes: Boc-Val-Pro-Arg-MCA for alpha-thrombin, Boc-Ile-Glu-Gly-Arg-MCA, and Boc-Ser-Gly-Arg-MCA for factor Xa, Z-Phe-Arg-MCA for plasma kallikrein, Pro-Phe-Arg-MCA for pancreatic and urinary kallikreins, and glutaryl-Gly-Arg-MCA for urokinase. Moreover, these peptide-MCA substrates were resistant to plasmin.  相似文献   

13.
Plasmin plays important roles in various physiological systems. The identification of inhibitors controlling its regulation represents a promising drug-discovery challenge. To develop selective inhibitors of plasmin, structural information of the binding modes is crucial. Here, a computational docking study was conducted to provide structural insight into plasmin subsite interactions with substrates/inhibitors. Predicted binding modes of two peptide-substrates (D/L-Ile-Phe-Lys), and potent and weak inhibitors (YO-2 and PKSI-527) suggested non-prime and prime subsite interactions relevant to recognition by plasmin. Predicted binding modes also correlated well with the experimental structure-activity relationships for plasmin substrates/inhibitors, namely the differences of K(M) values between the D- and L-peptide-substrates and inhibitory potencies of YO-2 and PKSI-527. In particular, interaction observed at a hydrophobic pocket near S2 and at a tunnel-shaped hydrophobic S1' was strongly suggested to be significantly involved in tight binding of inhibitors to plasmin. Our present findings may aid in the design of potent and selective plasmin inhibitors.  相似文献   

14.
The p-nitrophenyl ester of p-amidinophenylmethanesulfonic acid had been found to inactivate thrombin by affinity labeling but did not have this action on other proteases of similar specificity such as trypsin, plasmin, or plasma kallikrein [Wong, S.-C., and Shaw, E., Arch. Biochem. Biophys. 161, 536 (1974)]. The ortho- and meta-nitrophenyl esters of this sulfonic acid have now been synthesized and shown to be less selective. In addition to thrombin, trypsin and plasma kallikrein are also inactivated. The ortho isomer is more effective than the meta. Plasmin is unaffected by all three esters. The results are interpreted to reflect geometrical differences in the first departing group subsite of these homologous active centers and to provide an additional structural basis for achieving selectivity of affinity labeling.  相似文献   

15.
The interactions of mouse murinoglobulin and alpha-macroglobulin with several proteinases were investigated by filtration and by assays of amidolytic activity towards synthetic substrates in the presence of proteinaceous enzyme inhibitors as well as assays of the inhibition of proteolytic activity. Mouse alpha-macroglobulin formed complexes with thrombin, clotting factor Xa, plasmin, pancreatic kallikrein, plasma kallikrein, submaxillary gland trypsin-like proteinase, neutrophil elastase, and pancreatic elastase. These complexes lost the proteolytic activities against high-molecular-weight substrates, but protected the active sites of the enzymes from inactivation by their proteinaceous inhibitors. Mouse murinoglobulin showed essentially the same properties except (i) that it did not form a complex with the clotting factor Xa, and (ii) that it did not protect plasma kallikrein, neutrophil elastase or submaxillary proteinase from inactivation by their proteinaceous inhibitors, although it formed complexes with these proteinases. No interaction was detected between Clostridium histolyticum collagenase and murinoglobulin or alpha-macroglobulin. These results indicate (i) that murinoglobulin has a proteinase-binding spectrum similar to that of alpha-macroglobulin, but is weaker in the ability to protect the bound proteinases from inactivation by the proteinaceous inhibitors than alpha-macroglobulin and (ii) that mouse alpha-macroglobulin has essentially the same inhibitory spectrum as the human homologue.  相似文献   

16.
Evidence is accumulating indicating that trypsin stimulates divergent cellular reactions through the proteinase-activated receptor, in addition to its role as the digestive enzyme. In this report, we introduce (2R,4R)- 4-phenyl-1-[N(alpha)-(7-methoxy-2-naphthalenesulfonyl)-l-arginyl]- 2-p iperidinecarboxylic acid as a potent and selective trypsin inhibitor. The agent inhibited trypsin competitively with the K(i) value of 0. 1 micrometer. It inhibited thrombin weakly (K(i) = 2 micrometer) and did not inhibit plasmin, plasma kallikrein, urokinase, and mast cell tryptase (K(i) values for these enzymes are >60 micrometer). Comparative studies with several established proteinase inhibitors revealed that the compound was the first small molecular weight trypsin inhibitor without tryptase inhibitory activity. A docking study has provided a plausible explanation for the molecular mechanism of the selective inhibition showing that the agent fits into the active site of trypsin without any severe collision but that it comes into clash at the 4-phenyl group of piperidine ring against the "60-insertion loop" of thrombin and at the 7-methoxy-2-naphthalenesulfonyl group against Gln(98) of tryptase.  相似文献   

17.
The primary inhibitor of plasmin in human plasma.   总被引:9,自引:0,他引:9       下载免费PDF全文
A complex between plasmin and an inhibitor was isolated by affinity chromatography from urokinase-activated human plasma. The complex did not react with antibodies against any of the known proteinase inhibitors in plasma. A rabbit antiserum against the complex was produced. It contained antibodies agianst plasminogen+plasmin and an alpha2 protein. By crossed immunoelectrophoresis the alpha2 protein was shown to form a complex with plasmin, when generated by urokinase in plasma, and with purified plasmin. The alpha2 protein was eluted by Sephadex G-200 gel filtration with KD approx. 0.35, different from the other inhibitors of plasmin in plasma, and corresponding to an apparent relative molecular mass (Mr) of about 75000. By sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, the Mr of the complex was found to be approx. 130000. After reduction of the complex two main bands of protein were observed, with Mr, about 72000 and 66000, probably representing an acyl-enzyme complex of plasmin-light chain and inhibitor-heavy chain, and a plasmin-heavy chain. A weak band with Mr 9000 was possibly an inhibitor-light chain. The inhibitor was partially purified and used to titrate purified plasmin of known active-site concentration. The inhibitor bound plasmin rapidly and strongly. Assuming an equimolar combining ratio, the concentration of active inhibitor in normal human plasma was estimated to be 1.1 mumol/1. A fraction about 0.3 of the antigenic inhibitor protein appeared to be functionally inactive. In plasma, plasmin is primarily bound to the inhibitor. Only after its saturation does lysis of fibrinogen and fibrin occur and a complex between plasmin and alpha2 macroglobulin appear.  相似文献   

18.
A plasma kallikrein inhibitor in guinea pig plasma (KIP) was purified to homogeneity. KIP is a single chain protein and the apparent molecular weight is estimated to be 59,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In amino acid composition, KIP is similar to human and mouse alpha 1-proteinase inhibitors and mouse contrapsin. KIP forms an equimolar complex with plasma kallikrein in a dose- and time-dependent fashion. The association rate constants for the inhibition of guinea pig plasma kallikrein by KIP, alpha 2-macroglobulin, C1-inactivator and antithrombin III were 2.5 +/- 0.3.10(4), 2.4 +/- 0.4.10(4), 6.6 +/- 0.5.10(4) and 9.1 +/- 0.6.10(2), respectively. Comparison of the association rate constants and the normal plasma concentrations of the four inhibitors demonstrates that KIP is ten-times as effective as alpha 2-MG and other two inhibitors are marginally effective in the inhibition of kallikrein. KIP inhibits trypsin and elastase rapidly, and thrombin and plasmin slowly, but is inactive for chymotrypsin and gland kallikrein. These results suggest that KIP is the major kallikrein inhibitor in guinea pig plasma and the proteinase inhibitory spectrum is unique to KIP in spite of the molecular similarity to alpha 1-proteinase inhibitor.  相似文献   

19.
The effect of various proteases (kallikrein, plasmin, and trypsin) on sperm phospholipase A2 activity (PA2: EC 3.1.1.4) has been studied. The addition of trypsin to spermatozoa, isolated and washed in the presence of the protease inhibitor benzamidine, increased PA2 activity optimally with trypsin concentrations of 1.0–1.5 units/assay. In kinetic studies, all of the above proteases stimulated the deacylation of phosphatidylcholine (PC); in fresh spermatozoa, trypsin showed a higher activation potential than kallikrein or plasmin. In the presence of benzamidine, the activity remained at basal levels. Endogenous protease activity due to acrosin (control) resulted in an increase in PC deacylation compared to the basal level. The maximum activation time of PA2 activity by proteases was 30 min. Natural protease inhibitors (soybean trypsin inhibitor and aprotinin) kept the PA2 activity at basal levels and a by-product of kallikrein, bradykinin, did not significantly affect the control level. Protein extracts of fresh spermatozoa exhibited the same pattern of PA2 activation upon the addition of proteases, thus indicating that the increase in PA2 activity was not merely due to the release of the enzyme from the acrosome. All of these findings suggest the presence of a precursor form of phospholipase A2 that can be activated by endogenous proteases (acrosin) as well by exogenous proteases present in seminal plasma and in follicular fluid (plasmin, kallikrein). Thus, this interrelationship of proteases and prophospholipase A2 could activate a dormant fusogenic system: the resulting effect would lead to membrane fusion by lysolipids, key components in the acrosome reaction.  相似文献   

20.
The plasminogen/plasmin system is involved in vascular wall remodeling after injury, through extracellular matrix (ECM) degradation and proteinase activation. Vascular smooth muscle cells (VSMCs) synthesize various components of the plasminogen/plasmin system. We investigated the conversion of plasminogen into plasmin in primary cultured rat VSMCs. VSMCs efficiently converted exogenous plasminogen into plasmin in a time- and dose-dependent manner. We measured plasmin activity by monitoring the hydrolysis of Tosyl-G-P-R-Mca, a fluorogenic substrate of plasmin. Cell-mediated plasmin activation was associated with the degradation of ECM, as revealed by fibronectin proteolysis. Plasmin also activated a proteinase able to hydrolyze Mca-P-L-G-L-Dpa-A-R-NH(2), a fluorogenic substrate of matrix metalloproteinases (MMPs). However, this proteinase was not inhibited by an MMP inhibitor. Furthermore, this proteinase displayed similar biochemical and pharmacological properties to fibronectin-proteinase, a recently identified zinc-dependent metalloproteinase located in the gelatin-binding domain of fibronectin. These results show that VSMCs convert exogenous plasminogen into plasmin in their pericellular environment. By hydrolyzing matrix protein plasmin activates a latent metalloproteinase that differs from MMP, fibronectin-proteinase. This metalloproteinase may participate to vascular wall remodeling, in concert with other proteinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号