首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Treatment of Rh(acac)(CO)2 (acac = acetoacetonate) with perchloric acid followed by addition of an α-diimine (α-diimine = 1,4-bis(Ar)-2,3-dimethyl-1,4-diaza-1,3-butadiene, Ar = 3,5-dimethylphenyl, 1; 3,5-di-tert-butylphenyl, 2; and 3,4,5-trimethoxyphenyl, 3; phenyl, 4; and 4-chlorophenyl, 5) generates a series of complexes of the type [Rh(α-diimine)(CO)2][ClO4] 6-10 with varying electronic properties of the supporting diimine ligand. X-ray crystal structures have been determined for the α-diimine ligands 1-5, and complexes 6, 8, and 10.  相似文献   

2.
The preparation of cationic rhodium complexes of the types [RhL(IQNO)2]ClO4 (L  COD, COT and NBD) and [Rh(COD)(IQNO)L′]ClO4 (L′ = 4-NH2py, 4-NMe2py and PPh3) and the reactions of [Rh(COD)(IQNO)2]ClO4 with N- and P-donor ligands are described.  相似文献   

3.
Neutral and cationic platinum(IV) isocyanide complexes of the type [PtCl4(CNR)2], [PtCl4(CNR) (PMe2Ph)], [PtCl3(CNR)(PMe2Ph)2]+, [PtCl2(CNR)2 (PMe2Ph)2]2+, where R = methyl, t-butyl, cyclohexyl, p-tolyl, have been prepared by chlorine addition to the corresponding platinum(II) derivatives. The complexes [PtCl2(CN)2(CNR)2] and [PtCl2(CN)(CNR) (PMe2Ph)2]+ (R = t-butyl), are also reported. The cationic t-butylisocyanide derivatives are noteworthy in the way they readily lose the t-butyl cation at room temperature to give the corresponding cyano complexes. The compounds have been characterized by elemental analysis, molecular weights and conductivity measurements, and their i.r. and n.m.r. data are discussed in relation to structures and to the nature of the platinum-isocyanide bond.  相似文献   

4.
The mixed ligand cationic rhodium(I) complexes of the type [Rh(COD)LL′]C104 (L=QNO, 2-Me- QNO, 4-MeQNO, 4-C1QNO, 2-PhQNO; L′=4-NH2py, 4-NMe2py, Im, PPh3) have been prepared and characterized. The reactions of [Rh(COD)(4-MeQNO)2]- C104 with various ligands are also reported.  相似文献   

5.
New cationic hydride complexes of rhodium(III) with PR3 and R-DAB ligands have been prepared and characterised. The tertiary phosphines employed were PPh3, PMePh2, PEt3 and the R-DAB ligands, (RN:CR′CR′:NR), c-Hex-DAB, Ph-DAB, NH2-DAB-(CH3,CH3). Hexacoordinate-dihydride complexes, characterized by 1H and 31P NMR, with stoichiometry [RhH2(R-DAB)(PR3)2]X were obtained. Compounds with other stoichiometries (R-DAB/PR3=1 or 2) are also possible. Preliminary studies of the catalytic activity in hydrogenation of olefins have been carried out.  相似文献   

6.
A series of silver and copper coordination complexes has been studied using secondary ion mass spectrometry (SIMS). Results are presented for the monomeric silver(I) complexes [Ag(CNR)4]X, where R = cyclohexyl for X  ClO4, and R = methyl or t-butyl for X  PF6. Likewise, Cu(I) complexes [Cu(CNR)4]PF6, where R =methyl, t-butyl, or cyclohexyl, were examined. The presence of AgL2+ (L represents the intact RNC ligand) and the absence of AgL3+ and AgL4+ species attests to the gas phase stability of two-coordinate silver(I). Similar results to these were obtained for the Cu(I) complexes, with the exception of [Cu(CNCH3)4]PF6 whose spectrum contains CuL4+, CuL3+, CuL2+, CuL+, and Cu+ ions. The latter result reflects the enhanced stability of the tetrahedral Cu(I) geometry compared to Ag(I) in the gas phase. Cross labeling experiments and isotopic labeling studies have provided insights into fragmentation mechanisms. Ligand exchange occurs when mixtures are examined. These exchange reactions provide evidence for extensive molecular mixing which can accompany SIMS even under low primary ion dose conditions. Cluster ion formation as well as the observation of α-cleavage of the NC bonds of RNC ligands have been observed and these results are discussed. Granulated graphite and ammonium chloride were employed to study matrix effects. Granulated graphite enhanced NC cleavage for the silver complexes but had little effect on the relative abundance of silver cluster ions. On the other hand, copper cluster ions were more sensitive to matrix effects.  相似文献   

7.
Oxidation of the title complexes with ozone takes place by hydrogen atom, hydride, and electron transfer mechanisms. The reaction with (NH3)4(H2O)RhH2+ is a two electron process, believed to involve hydride transfer with a rate constant k = (2.2 ± 0.2) × 105 M−1 s−1 and an isotope effect kH/kD = 2. The oxidation of (NH3)4(H2O)RhOOH2+ to (NH3)4(H2O)RhOO2+ by an apparent hydrogen atom transfer is quantitative and fast, k = (6.9 ± 0.3) × 103 M−1 s−1, and constitutes a useful route for the preparation of the superoxo complex. The latter is also oxidized by ozone, but more slowly, k = 480 ± 50 M−1 s−1.  相似文献   

8.
The synthesis of new β-diketonato rhodium(I) complexes of the type [Rh(FcCOCHCOR)(CO)2] and [Rh(FcCOCHCOR)(CO)(PPh3)] with Fc=ferrocenyl and R=Fc, C6H5, CH3 and CF3 are described. 1H, 13C and 31P NMR data showed that for each of the non-symmetric β-diketonato mono-carbonyl rhodium(I) complexes, two isomers exist in solution. The equilibrium constant, Kc, which relates these two isomers in an equilibrium reaction, are concentration independent but temperature and solvent dependent. ΔrG, ΔrH and ΔrS values for this equilibrium have been determined and a linear relationship between solvent polarity on the Dimroth scale and Kc exists. The relationship between RhP bond lengths, d(RhP), and 31P NMR peak positions as well as coupling constants 1J(31P103Rh) has been quantified to allow calculation of approximate d(RhP) values. Variations in d(RhP) for [Rh(RCOCHCOR′)(CO)(PPh3)] complexes have also been related to the group electronegativities (Gordy scale) of the terminal β-diketonato R groups trans to PPh3. A measure of the electron density on the rhodium centre of [Rh(RCOCHCOR′)(CO)(PPh3)] may be expressed in terms of the IR carbonyl stretching wave number, ν(CO), the sum of the group electronegativities of the R and R′ groups, (χR+χR′), or the observed pKa values of the free β-diketones RCOCH2COR. An empirical relationship between ν(CO) and either pKa or (χR+χR′) has also been quantified.  相似文献   

9.
Antitumour action of planar, organometallic rhodium(I) complexes   总被引:1,自引:0,他引:1  
Four cis-, square planar rhodium(I) organometallic complexes have been tested for antineoplastic properties. Their activity varies depending on the tumour system employed. They cause little or no effect on the growth of solid S180, and only one of them is effective on LI210 leukemia. Their activity on Ehrlich ascites is more pronounced, with low T/C ratios, two derivatives in particular causing some regressions. This greater activity on ascites carcinoma has been correlated with the oxidability and the lability of the leaving groups of these complexes. The most active compound on Ehrlich ascites, when tested for effects on the incorporation of labelled precursors in macromolecules shows a selective inhibition of leucine incorporation into proteins at therapeutically active doses. It is pointed out that these rhodium derivatives, in contrast to platinum complexes, are characterized by π carbon-metal bonds instead of nitrogen donor ligands for the non-leaving groups.  相似文献   

10.
11.
Aryloxide rhodium(I) complexes Rh(OAr)(PPh3)3 (1a: Ar=C6Cl5, 1b: Ar=C6F5, 1c: Ar=C6H4-NO2-4) react with CO in toluene solutions to produce Vaska-type complexes trans-Rh(OAr)(CO)(PPh3)2 (2a: Ar=C6Cl5, 2b: Ar=C6F5, 2c: Ar=C6H4-NO2-4). Carbonylation of a similar complex with PMe3 ligands, Rh(OC6H4-NO2-4)(PMe3)3 (3c), also forms trans-Rh(OC6H4-NO2-4)(CO)(PMe3)2 (4c). Molecular structures of the complexes are determined by X-ray crystallography and NMR spectroscopy. Complex 1a reacts with CO in the absence of solvent to produce a mixture of 2a and complex A, the latter of which shows the IR and 13C{1H} signals due to the carbonyl ligand at different positions from those of 2a. Addition of Et2O to the above mixture turns it into analytically pure 2a. Carbonylation of 1b and 1c under the solvent-free conditions produces complexes B and C as the respective products of the solid-gas reaction. Recrystallization of B and C turns them into 2b and 2c, respectively. Complex 3c also reacts with CO in the solid state to form a mixture of 4c and complex D, although the latter complex is converted slowly into 4c even in the solid state.  相似文献   

12.
N-heterocyclic carbene (NHC) complexes of rhodium(I) (3 and 4) bearing one diether (MeOCH2CH2OCH2CH2-NHC) functionality on N1 and bulky benzyl groups (CH2-C6H2(CH3)3-2,4,6 and CH2-C6(CH3)5) on N3 of (5,6-dimethyl)benzimidazole were synthesized by deprotonation of the corresponding benzimidazolium salt with [Rh(μ-OMe)(1,5-cod)]2 in dichloromethane at ambient temperature. All compounds have been fully characterized by elemental analysis, 1H and 13C NMR spectroscopy. X-ray diffraction studies on single crystals of 3a and 3b confirm the cis square planar geometry. All of the new benzimidazol-2-ylidene rhodium(I) complexes were found to be effective catalysts for the transfer hydrogenation reaction.  相似文献   

13.
Rh(I) and Ir(I) complexes of the type [Rh(cod)(η2-TMPP)]1+ (1) and M(cod)(η2-TMPP-O) (M = Rh (2), Ir (3); cod = cyclooctadiene; TMPP = tris(2,4,6-trimethoxyphenyl)phosphine; TMPP-O = mono-demethylated form of TMPP) have been isolated from reactions of [M(cod)Cl]2 with M′BF4 (M′ = Ag+, K+, Na+) followed by addition of the tertiary phosphine ligand. This chemistry is dependent on the identity of the metal, as both the cationic phosphine complex and the neutral phosphino-phenoxide compound are stable for Rh(I), whereas only the latter is stable for Ir(I). The three complexes have been characterized by IR and NMR (1H and 31P) spectroscopies as well as by cyclic voltammetry. The 1H NMR spectrum of [Rh(cod)(η2-TMPP)]1+ (1) is in accord with the formula and reveals that the TMPP phenyl rings are undergoing rapid exchange between coordinated and non-coordinated modes; the corresponding spectra of 2 and 3 support free rotation about the P---C bonds of the unbound phenyl rings with no fluxionality of the bound demethylated ring. The 31P{1H} NMR spectrum of the neutral species 2 exhibits a significant upfield shift with respect to the analogous cationic compound 1. This shielding is the result of improved electron donation to the metal from a phenoxide group as compared to an ether substituent. In situ addition of CO to the reaction between TMPP and [Rh(cod)Cl]2 or [Ir(cod)Cl]2 in the presence of M′BF4 results in the isolation of the monocarbonyl species [Rh(TMPP)(η2-TMPP)(CO)][BF4] (5) and the stable dicarbonyl compound [Ir(TMPP)2(CO)2][BF4] (4), respectively. Single crystal X-ray data for . The geometry of 4 is square planar, with essentially ideal angles for the mutually trans disposed phosphine and carbonyl ligands, as found in earlier studies for the analogous Rh dicarbonyl compound. The 1H NMR spectrum of 4 supports the assignment of magnetically equivalent phosphorus nuclei in solution. The results of this study indicate that cyclooctadiene is a particularly strong ligand for monovalent late transition metals ligated by TMPP, to the extent that it is inert with respect to substitution in the absence of π-acceptor ligands such as carbon monoxide.  相似文献   

14.
The kinetics and mechanism of the oxidative addition of CH3I to [Rh(acac)(CO)(PX3)], where X = p-chlorophenyl, phenyl and p-methoxyphenyl, were studied with the aid of IR and visible spectrophotometry in 1,2-dichloroethane. The reaction proceeds through an initial ionic intermediate followed by two consecutive equilibrium steps, the first involving acetyl formation followed by acyl → alkyl rearrangement to give [Rh(acac)(CO)(CH3)- (I)(PX3)] as final product. Equilibrium and rate constants are correlated with phosphine basicity.  相似文献   

15.
Reactions of Cp*M(MDMPP-P,O)Cl (1a: M=Rh, 1b: M=Ir; MDMPP-P,O=PPh2(2-O-6-MeOC6H3)) with tetracyanoethylene (tcne) in the presence of KPF6 gave Cp*MCl[PPh2{2-O-3-(C(CN)2CH(CN)2)-6-MeOC6H2}] (2), [{Cp*MPPh2{2-O-3-(C(CN)C(CN)2)-6-MeOC6H2}}2(CN)](PF6) (3), [{Cp*IrPPh2{2-O-3-(C(CN)C(CN)2)-6-MeOC6H2}}(CN){Cp*Ir(MDMPP-P,O)}](PF6) (4b) and [{Cp*Ir(MDMPP-P,O)}2(CN)](PF6) (5b), depending on the reaction conditions. Reaction of 2 with KPF6 or AgOTf in the absence and presence of xylyl isocyanide (XylNC) gave 3 or [Cp*MCl{PPh2(2-O-3-(C(CN)2-CH(CN)2)-6-MeOC6H2)}(XylNC)](OTf) (6). The structure of 3a (M=Rh) was confirmed by X-ray crystal analysis.  相似文献   

16.
A novel T-silyl functionalized cationic (COD)(dppp)rhodium(I) complex was sol-gel processed with various amounts of the co-condensing agents MeSi(OMe)2(CH2)6(OMe)2SiMe and MeSi(OMe)2(CH2)3(C6H4)(CH2)3(OMe)2SiMe to give novel stationary phases for ‘Chemistry in Interphases’. The polysiloxane matrices and the integrity of the rhodium(I) complex centers were investigated by means of multinuclear solid-state NMR (13C, 29Si, 31P) and EXAFS spectroscopies. Dynamic NMR measurements show an increasing mobility of the matrix and the reactive centers with a higher amount of the co-condensing component. The accessibility of the anchored rhodium(I) centers was scrutinized by the metal catalyzed hydrogenation of 1-hexene. All applied xerogels show remarkable activities and selectivities. An enhancement of the activities is achieved when polar solvents are used. SEM micrographs reveal the morphology of the hybrid materials and energy dispersive X-ray spectroscopy (EDX) suggests that the distribution of the elements is in satisfying agreement with the applied composition.  相似文献   

17.
《Inorganica chimica acta》2006,359(9):2835-2841
Rh(I) carbene complexes of [RhX(bmim)(η4-1,5-cod)] type (bmim = 1-butyl-3-methyl imidazolium cation, X = Cl 2, Br 3, I 4), obtained in the reaction of [Rh(OMe)(η4-1,5-cod)]2 (1) with [bmim]X ionic liquids, catalyzed polymerization of phenylacetylene (PA) to cis-polyphenylacetylene (PPA) in CH2Cl2 and in ionic liquids. The yield of PPA increased and molecular weight (Mw) decreased after addition of phosphorus ligands PPh3 or P(OPh)3. Complex 4 reacted with P(OPh)3 giving cis-[RhI(bmim)(P(OPh)3)2] (5) complex which catalyzed oligomerization but not polymerization of PA.  相似文献   

18.
The mixture of isomers of silylated cyclopentadiene derivative C5H5CH2CH2Si(OMe)3 (1) has been used for the syntheses of the mononuclear Rh(I) complexes [η5-C5H4(CH2)2Si(OMe)3]Rh(CO)2 (3). [η5-C5H4(CH2)2Si(OMe)3]Rh(COD) (4) and [η5-C5H4(CH2)2Si(OMe)3]Rh(CO)(PPh3) (5). Upon entrapment of 3–5 in silica sol-gel matrices, air stable, leach-proof and recyclable catalysts 6–8 resulted. Their catalytic activities in some hydrogenation processes were compared with those of the non-immobilized complexes 3–5, as well as with those of homogeneous and heterogenized non-silylated analogs, 9–14.  相似文献   

19.
The title compounds were synthesised by the replacement of chlorine in Rh(CO)(PPh3)2Cl with monobasic bidentate chelating ligands such as salicylaldehyde, acetylacetone, benzoylacetone, dibenzoylmethane, 8-hydroxyquinoline, benzoylphenyl hydroxylamine, 2-hydroxyacetophenone and 2-hydroxybenzophenone. IR spectral evidence points out that these compounds have a trigonal bipyramidal geometry around rhodium in the solid state. However, in benzene solutions, except for the 8-hydroxyquinoline and 2-hydroxybenzophenone derivatives they all take a square planar structure, as seen from their electronic spectra.  相似文献   

20.
《Inorganica chimica acta》2006,359(9):2966-2972
The activity of several neutral, rhodium(I) bis(phosphine) complexes for the dehydrogenative coupling of di-n-hexylsilane to two- and three-silicon chains was investigated and discussed in the context of the coordination numbers and geometries likely to be critical to catalyst activity. Wilkinson’s dimer, [Rh(μ-Cl)(PPh3)2]2, shows the highest activity, while [Rh(μ-Cl)(dppe)]2, with its rigidly cis-chelating diphosphine ligand, shows negligible activity for the dehydrocoupling reaction, even when the reaction is carried out in methylene chloride, in which both catalyst and silane are soluble. A dramatic decrease in the activity of Wilkinson’s dimer when the reaction is carried out in toluene or methylene chloride solution instead of neat silane is attributed to rate-limiting escape of the product hydrogen gas away from the solvated active catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号