首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The importance of algae-derived biofuels has been highlighted by the current problems associated with fossil fuels. Considerable past research has shown that limiting nutrients such as nitrogen and phosphorus increases the cellular lipid content in microalgae. However, limiting the supply of nutrients results in decreased biomass, which in turn decreases the overall lipid productivity of cultures. Therefore, nutrient limitation has been a subject of dispute as to whether it will benefit biofuel production on an industrial scale. Our research explores the physiological changes a cell undergoes when exposed to nitrogen and phosphorus limitations, both individually and in combination, and also examines the biotechnological aspects of manipulating N and P in order to increase cellular lipids, by analyzing the lipid production. We show that nitrogen starvation and also nitrogen plus phosphorus starvation combined have a more profound effect on the physiology and macromolecular pools of Chlamydomonas reinhardtii than does phosphorus starvation alone. The photosynthetic performance of C. reinhardtii underwent drastic changes under nitrogen starvation, but remained relatively unaffected under phosphorus starvation. The neutral lipid concentration per cell was at least 2.4-fold higher in all the nutrient-starved groups than the nutrient-replete controls, but the protein level per cell was lower in the nitrogen-starved groups. Overall, nitrogen starvation has a more dramatic effect on the physiology and neutral lipids and protein levels of C. reinhardtii than phosphorus starvation. However, the level of total lipids per volume of culture obtained was similar among nutrient-replete and all of the nutrient-starved groups. We conclude that combined nitrogen and phosphorus starvation does not likely benefit biofuel production in terms of enhanced lipid or biomass production.  相似文献   

2.
The thioredoxin (TRX) superfamily includes redox proteins such as thioredoxins, glutaredoxins (GRXs) and protein disulfide isomerases (PDI). These proteins share a common structural motif named the thioredoxin fold. They are involved in disulfide oxido-reduction and/or isomerization. The sequencing of the Arabidopsisgenome revealed an unsuspected multiplicity of TRX and GRX genes compared to other organisms. The availability of full Chlamydomonasgenome sequence offers the opportunity to determine whether this multiplicity is specific to higher plant species or common to all photosynthetic eukaryotes. We have previously shown that the multiplicity is more limited in Chlamydomonas for TRX and GRX families. We extend here our analysis to the PDI family. This paper presents a comparative analysis of the TRX, GRX and PDI families present in Arabidopsis,Chlamydomonas and Synechocystis. The putative subcellular localization of each protein and its relative expression level, based on EST data, have been investigated. This analysis provides a large overview of the redox regulatory systems present in Chlamydomonas. The data are discussed in view of recent results suggesting a complex cross-talk between the TRX, GRX and PDI redox regulatory networks.  相似文献   

3.
4.
5.
6.
7.
Microalgal biofuel is a promising solution to the decline of fossil fuels. However, algal fatty acid metabolism, the machinery producing the raw material for biofuels, remains poorly understood. The central unit of the fatty acid synthase (FAS) is the acyl carrier protein (ACP), which is responsible for holding the product. Fatty acid biosynthesis is initiated through posttranslational modification of the ACP by the phosphopantetheinyl transferase (PPTase). We identified two PPTases, PptC1 and PptC2, in the model alga Chlamydomonas reinhardtii by genome analysis and phylogenetic and structural comparison. Both PPTases are of Sfp-type, the archetypical PPTase type for non-ribosomal peptide and polyketide biosynthetic pathways in bacteria and cyanobacteria. In vitro analysis revealed that PptC2 has a broader substrate range than PptC1. Both PPTases were able to activate the cognate ACP of the type II FAS, while PptC2 also recognized ACP of Escherichia coli type II FAS and actinorhodin type II polyketide synthase. Besides FAS as PPTase target, the C. reinhardtii genome encodes a single type I PKS, and we hypothesize that PptC2 is responsible for its activation. Screening of the currently available microalgal genome data revealed that most green microalgae appear to carry two PPTases forming clusters with each C. reinhardtii PPTase, while microalgae of other divisions carry one or two PPTases and do not cluster in the pattern of the green algal data. This new understanding on the PPTases in microalgae shows that microalgae are already primed for biotechnological applications in contrast to other organisms. Thus, microalgae have great potential for metabolic engineering efforts in the realm of biofuel and high-value products including direct engineering of the fatty acid or secondary metabolism using the natural genomic reservoir and as biotechnological platform for heterologous expression.  相似文献   

8.
The FUD17 strain of Chlamydomonas reinhardtii is a photosynthesis-deficient, acetate-requiring mutant with a defect in the chloroplast atpE gene, which codes for the ε subunit of the chloroplast ATP synthase. In this work, the FUD17 mutant was examined in relation to other known ATP synthase mutants as an initial step toward using this strain to generate altered versions of the atpE gene for site-directed mutagenesis of the ε subunit. The FUD17 strain grows well and is normally pigmented in the dark (heterotrophic conditions), but cannot grow autotrophically in the light, even when media are supplemented with acetate. Under heterotrophic conditions, it shows no accumulation of the ε subunit, and much lower levels of the α and β subunits of the chloroplast ATP synthase. FUD17 shows no light-dependent oxygen evolution and shows a strong, light-dependent alteration in its chlorophyll fluorescence. These results show that FUD17 possesses similar characteristics to other ATP synthase mutants and fails to express an assembled ATP synthase complex on its thylakoid membrane. A preliminary attempt at site-directed mutagenesis is described which produced a slightly truncated form of the ε subunit, which is expressed normally in the cell. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
The Drosophila melanogaster genes zerknüllt (zen) and fushi tarazu (ftz) are members of the Hox gene family whose roles have changed significantly in the insect lineage and thus provide an opportunity to study the mechanisms underlying the functional evolution of Hox proteins. We have studied the expression of orthologs of zen (DpuHox3) and ftz (Dpuftz) in the crustacean Daphnia pulex (Branchiopoda), both of which show a dynamic expression pattern. DpuHox3 is expressed in a complex pattern in early embryogenesis, with the most anterior boundary of expression lying at the anterior limit of the second antennal segment as well as a ring of expression around the embryo. In later embryos, DpuHox3 expression is restricted to the mesoderm of mandibular limb buds. Dpuftz is first expressed in a ring around the embryo following the posterior limit of the mandibular segment. Later, Dpuftz is restricted to the posterior part of the mandibular segment. This is the first report of expression of a Hox3 ortholog in a crustacean, and together with Dpuftz data, the results presented here show that Hox3 and ftz have retained a Hox-like expression pattern in crustaceans. This is in accordance with the proposed model of Hox3 and ftz evolution in arthropods and allows a more precise pinpointing of the loss of ftz “Hox-like behaviour”: in the lineage between the Branchiopoda and the basal insect Thysanura.  相似文献   

10.
11.
The unicellular green alga Chlamydomonas reinhardtii has been identified as a promising organism for the production of recombinant proteins. While during the last years important improvements have been developed for the production of proteins within the chloroplast, the expression levels of transgenes from the nuclear genome were too low to be of biotechnological importance. In this study, we integrated endogenous intronic sequences into the expression cassette to enhance the expression of transgenes in the nucleus. The insertion of one or more copies of intron sequences from the Chlamydomonas RBCS2 gene resulted in increased expression levels of a Renilla-luciferase gene used as a reporter. Although any of the three RBCS2 introns alone had a positive effect on expression, their integration in their physiological number and order created an over-proportional stimulating effect observed in all transformants. The secretion of the luciferase protein into the medium was achieved by using the export sequence of the Chlamydomonas ARS2 gene in a cell wall deficient strain and Renilla-luciferase could be successfully concentrated with the help of attached C-terminal protein tags. Similarly, a codon adapted gene variant for human erythropoietin (crEpo) was expressed as a protein of commercial relevance. Extracellular erythropoietin produced in Chlamydomonas showed a molecular mass of 33 kDa probably resulting from post-translational modifications. Both, the increased expression levels of transgenes by integration of introns and the isolation of recombinant proteins from the culture medium are important steps towards an extended biotechnological use of this alga. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Summary. Chlamydomonas reinhardtii, a unicellular green microalga, could grow to a stationary phase having optical density of 2.0–2.5 at 750 nm in Tris-acetate-phosphate (TAP) medium containing 0.1% D-alanine. D-alanine has no inhibitory effect on growth and induced alanine racemase activity 130-fold more than without D-alanine in the green alga. Although C. reinhardtii cultured in the TAP medium showed alanine racemase activity, the content of free D-alanine was only 0.14%. The enzyme was partially purified by ammonium sulfate fractionation followed by three kinds of liquid chromatography using DEAE Toyopearl, Phenyl Sepharose, and TSK G3000 SWXL columns. The specific activity for L-alanine of the partially purified alanine racemase was 3.8 μmol/min/mg. The molecular weight of the enzyme was determined to be approximately 72,000 by gel filtration. The enzyme showed a maximum activity at 45 °C and pH 8.4 and requires pyridoxal 5′-phosphate as a coenzyme.  相似文献   

13.

Key message

Map-based cloning identified a candidate gene for resistance to the anthracnose fungal pathogen Colletotrichum orbiculare in cucumber, which reveals a novel function for the highly conserved STAYGREEN family genes for host disease resistance in plants.

Abstract

Colletotrichum orbiculare is a hemibiotrophic fungal pathogen that causes anthracnose disease in cucumber and other cucurbit crops. No host resistance genes against the anthracnose pathogens have been cloned in crop plants. Here, we reported fine mapping and cloning of a resistance gene to the race 1 anthracnose pathogen in cucumber inbred lines Gy14 and WI 2757. Phenotypic and QTL analysis in multiple populations revealed that a single recessive gene, cla, was underlying anthracnose resistance in both lines, but WI2757 carried an additional minor-effect QTL. Fine mapping using 150 Gy14?×?9930 recombinant inbred lines and 1043 F2 individuals delimited the cla locus into a 32 kb region in cucumber Chromosome 5 with three predicted genes. Multiple lines of evidence suggested that the cucumber STAYGREEN (CsSGR) gene is a candidate for the anthracnose resistance locus. A single nucleotide mutation in the third exon of CsSGR resulted in the substitution of Glutamine in 9930 to Arginine in Gy14 in CsSGR protein which seems responsible for the differential anthracnose inoculation responses between Gy14 and 9930. Quantitative real-time PCR analysis indicated that CsSGR was significantly upregulated upon anthracnose pathogen inoculation in the susceptible 9930, while its expression was much lower in the resistant Gy14. Investigation of allelic diversities in natural cucumber populations revealed that the resistance allele in almost all improved cultivars or breeding lines of the U.S. origin was derived from PI 197087. This work reveals an unknown function for the highly conserved STAYGREEN (SGR) family genes for host disease resistance in plants.
  相似文献   

14.
Immobilization of Chlamydomonas reinhardtii in alginate increases its photorespiration rate. In the immobilized cells, the photorespiratory enzyme, phosphoglycolate phosphatase, was 75% higher than in freely suspended cells. Thus, the immobilized cells produced glycolate at twice the rate than in freely suspended cells when treated with aminooxyacetate (a transaminase inhibitor). With immobilized cells in a batch reactor, 270mol glycolatemg–1 Chl was produced after 12h.Revisions requested 27 October 2004; Revisions received 13 December 2004  相似文献   

15.
16.
The aim of this study was to determine if individual ticks among the progeny of a single female Rhipicephalus (Boophilus) microplus tick removed from cattle under natural conditions are the result of mating with one or several males. To this end, simulations were run using an existing dataset of genotypes from 8 microsatellite loci to predict the number of samples required and the best locus. Subsequently, 14–22 progeny from each of 15 engorged female ticks removed from three cows, and the engorged females themselves, were genotyped for the BmM1 locus and the minimum number of potential male parents was determined for each progeny group. Of the 15 progeny groups, 10 must have been sired by more than one male, as indicated by the presence of five unique alleles among the progeny or three unique alleles that could not have been contributed by the female. This finding demonstrates multiple paternity in R. microplus.  相似文献   

17.
In this study, the methanol extract of Arthrospira (Spirulina) platensis was examined for acute and subchronic toxicities. The extract did not produce any sign of toxicity within 7 days after feeding it at a single high dose of 6 g kg−1 body weight to female and male Swiss mice. For the subchronic toxicity test, the extract at doses of 6, 12, and 24 mg kg−1 body weight was orally administered to six male and six female Wistar rats daily for 12 weeks. Throughout the study period, we did not observe any abnormalities on behavior, food and water intakes, and health status among the treated animals. The hematology and clinical chemistry parameters of treated groups did not significantly differ from those of the controls in both sexes. Postmortem examination of the test groups also showed no abnormalities in both gross and histological findings. These results thus suggest that the methanol extract of A. platensis did not cause acute or subchronic toxicity in our experimental animals.  相似文献   

18.
Aggregatibacter (Actinobacillus) actinomycetemcomitans P7–20 strain isolated from a periodontally diseased patient has produced a bacteriocin (named as actinomycetemcomitin) that is active against Peptostreptococcus anaerobius ATCC 27337. Actinomycetemcomitin was produced during exponential and stationary growth phases, and its amount decreased until it disappeared during the decline growth phase. It was purified by ammonium sulphate precipitation (30–60% saturation), and further by FPLC (mono-Q ionic exchange and Phenyl Superose hydrophobic interaction) and HPLC (C-18 reversed-phase). This bacteriocin loses its activity after incubation at a pH below 7.0 or above 8.0, following heating for 30 min at 45°C, and after treatment with proteolytic enzymes such as trypsin, α-chymotrypsin, and papain. Actinomycetemcomitin has a molecular mass of 20.3 KDa and it represents a new bacteriocin from A. actinomycetemcomitans.  相似文献   

19.
Nymphs and larvae belonging to Ixodes spp. were collected from a red fox in Turkey. The ticks were identified morphologically and molecularly (16S rDNA PCR and phylogenetic analysis) as I. kaiseri. Sequence and phylogenetic analyses show that our I. kaiseri isolate is very similar to I. kaiseri isolates collected from Germany, Serbia, Romania, and Hungary. Therefore, the existence of I. kaiseri has been demonstrated for the first time in Turkey. More studies relating to the regional distribution and vectorial competence of I. kaiseri are needed.  相似文献   

20.
Allophycocyanin (APC) is a minor component of phycobiliproteins in cyanobacteria and red algae. This paper describes a simple and inexpensive extracting method for isolating APC from Spirulina (Arthrospira) platensis with high efficiency. The crude phycobiliprotein extract was pretreated by ammonium sulfate fractionation. Then, by adding hydroxylapatite into crude phycobiliprotein extract dissolved in 20 mM phosphate buffer (pH 7.0), APC was selectively adsorbed by hydroxylapatite but C-phycocyanin (C-PC) was not. The hydroxylapatite was collected and APC was extracted from the crude phycobiliprotein extract. Then, the enriched APC was washed off from the hydroxylapatite using 100 mM phosphate buffer (pH 7.0). In this simple extracting method it was easy to remove C-PC and isolate APC in large amounts. The absorbance ratio A 650/A 280 of extracted APC reached 2.0. The recovery yield was 70%, representing 4.61 mg · g−1 wet weight. The extracted APC could be further purified by a simple anion-exchange chromatography with a pH gradient from 5.6 to 4.0. The absorbance ratio A 650/A 280 of the purified APC reached 5.0, and the overall recovery yield was 43%, representing 2.83 mg · g−1 wet weight. Its purity was confirmed by native polyacrylamide gel electrophoresis (PAGE) and sodium dodecyl sulfate-PAGE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号