首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enterobacter cloacae NAD(P)H:nitroreductase (NR; EC 1.6.99.7) catalyzes two-electron reduction of a series of quinoidal compounds according to a "ping-pong" scheme, with marked substrate inhibition by quinones. The steady-state catalytic constants (k(cat)) range from 0.1 to 1600s(-1), and bimolecular rate constants (k(cat)/K(m)) range from 10(3) to 10(8)M(-1)s(-1). Quinones, nitroaromatic compounds and competitive to NADH inhibitor dicumarol, quench the flavin mononucleotide (FMN) fluorescence of nitroreductase. The reactivity of NR with single-electron acceptors is consistent with an "outer-sphere" electron transfer model, taking into account high potential of FMN semiquinone/FMNH(-) couple and good solvent accessibility of FMN. However, the single-electron acceptor 1,1(')-dibenzyl-4,4(')-bipyridinium was far less reactive than quinones possessing similar single-electron reduction potentials (E(1)(7)). For all quinoidal compounds except 2-hydroxy-1,4-naphthoquinones, there existed parabolic correlations between the log of rate constants of quinone reduction and their E(1)(7) or hydride-transfer potential (E(7)(Q/QH(-))). Based on pH dependence of rate constants, a single-step hydride transfer seems to be a more feasible quinone reduction mechanism. The reactivities of 2-hydroxy-1,4-naphthoquinones were much higher than expected from their reduction potential. Most probably, their enhanced reactivity was determined by their binding at or close to the binding site of NADH and dicumarol, whereas other quinones used the alternative, currently unidentified binding site.  相似文献   

2.
Human intestinal microbial flora were screened for their abilities to reduce nitroaromatic compounds by growing them on brain heart infusion agar plates containing 1-nitropyrene. Bacteria metabolizing 1-nitropyrene, detected by the appearance of clear zones around the colonies, were identified as Clostridium leptum, Clostridium paraputrificum, Clostridium clostridiiforme, another Clostridium sp., and a Eubacterium sp. These bacteria produced aromatic amines from nitroaromatic compounds, as shown by thin-layer chromatography, high-pressure liquid chromatography, and biochemical tests. Incubation of three of these bacteria with 1-nitropyrene, 1,3-dinitropyrene, and 1,6-dinitropyrene inactivated the direct-acting mutagenicity associated with these compounds. Menadione and o-iodosobenzoic acid inhibited nitroreductase activity in all of the isolates, indicating the involvement of sulfhydryl groups in the active site of the enzyme. The optimum pH for nitroreductase activity was 8.0. Only the Clostridium sp. required added flavin adenine dinucleotide for nitroreductase activity. The nitroreductases were constitutive and extracellular. An activity stain for the detection of nitroreductase on anaerobic native polyacrylamide gels was developed. This activity stain revealed only one isozyme in each bacterium but showed that the nitroreductases from different bacteria had distinct electrophoretic mobilities.  相似文献   

3.
Human intestinal microbial flora were screened for their abilities to reduce nitroaromatic compounds by growing them on brain heart infusion agar plates containing 1-nitropyrene. Bacteria metabolizing 1-nitropyrene, detected by the appearance of clear zones around the colonies, were identified as Clostridium leptum, Clostridium paraputrificum, Clostridium clostridiiforme, another Clostridium sp., and a Eubacterium sp. These bacteria produced aromatic amines from nitroaromatic compounds, as shown by thin-layer chromatography, high-pressure liquid chromatography, and biochemical tests. Incubation of three of these bacteria with 1-nitropyrene, 1,3-dinitropyrene, and 1,6-dinitropyrene inactivated the direct-acting mutagenicity associated with these compounds. Menadione and o-iodosobenzoic acid inhibited nitroreductase activity in all of the isolates, indicating the involvement of sulfhydryl groups in the active site of the enzyme. The optimum pH for nitroreductase activity was 8.0. Only the Clostridium sp. required added flavin adenine dinucleotide for nitroreductase activity. The nitroreductases were constitutive and extracellular. An activity stain for the detection of nitroreductase on anaerobic native polyacrylamide gels was developed. This activity stain revealed only one isozyme in each bacterium but showed that the nitroreductases from different bacteria had distinct electrophoretic mobilities.  相似文献   

4.
The reductive products of several nitroaromatic compounds have been found to be toxic, mutagenic, and carcinogenic. The nitroreductases present in intestinal microflora have been implicated in the biotransformation of these compounds to their deleterious metabolites. A "classical" nitroreductase has been purified from Enterobacter cloacae 587-fold using a protocol which yields approximately 1 mg of purified nitroreductase from 10 liters of cell culture. An analysis of the physical properties of the nitroreductase indicates that the enzyme is active as a monomer with a calculated molecular mass of 27 kDa. FMN has been identified as a required flavin cofactor and is present at a stoichiometry of 0.88 mol of FMN bound/mol of active enzyme. The enzyme was found capable of reducing nitrofurazone under aerobic conditions indicating that the mechanism involves an obligatory two-electron transfer. Thus, this enzyme can be classified as an oxygen-insensitive nitroreductase. The purified nitroreductase can utilize either NADH or NADPH as a source of reducing equivalents and can reduce a variety of nitroaromatic compounds including nitrofurans and nitrobenzenes as well as quinones. Studies in which the rates of nitroreduction for a series of para substituted nitrobenzene derivatives were determined suggest that a linear free energy relationship exists between the rate and the redox midpoint potential of the substrate.  相似文献   

5.
Previously reported azoreductase (AZR) from Rhodobacter sphaeroides AS1.1737 was shown to be a flavodoxin possessing nitroreductase and flavin mononucleotide (FMN) reductase activities. The structure model of AZR constructed with SWISS-MODEL displayed a flavodoxin-like fold with a three-layer α/β/α structure. With nitrofurazone as substrate, the optimal pH value and temperature were 7.0 and 50°C, respectively. AZR could reduce a number of nitroaromatic compounds including 2,4-dinitrotoluene, 2,6-dinitrotoluene, 3,5-dinitroaniline, and 2,4,6-trinitrotoluene (TNT). TNT resulted to be the most efficient nitro substrate and was reduced to hydroxylamino-dinitrotoluene. Both NADH and NADPH could serve as electron donors of AZR, where the latter was preferred. Externally added FMN was also reduced by AZR via ping-pong mechanism and was a competitive inhibitor of NADPH, methyl red, and nitrofurazone. AZR with broad substrate specificity is a member of a new nitro/FMN reductase family demonstrating potential application in bioremediation.  相似文献   

6.
The NAD(P)H-nitroreductase of thePseudomonas sp. HK-6 which is capable of catabolizing 2,4,6-trinitrotoluene (TNT), was purified and biochemically characterized. The specific activity of the purified TNT nitroreductase was approximately 1.47 units/mg, and was concentrated to 10.1-fold compared to the crude extract. The optimal temperature and pH of the highest nitroreductase activity was 30°C and 7.5, respectively. The substrate specificity test revealed that the nitroreductase exhibited the highest enzyme activity for the TNT substrate of the nitroaromatic compounds tested in this study. Moreover, the molecular weight of the TNT nitroreductase was approximately 27 kDa on the SDS-PAGE. The N-terminal amino acid sequence of the purified protein was 5′-MDTVSLAKRRYTTKAYDASR, which is identical topnrB ofPseudomonas putida JLR11, and is capable of TNT reduction. The molecular analysis of the approximately 650-bp PCR product, orginating from the HK-6, revealed that the oxygen-insensitive NAD(P)H-nitroreductase gene, which transforms TNT in strain HK-6 with five unique amino acid sequences and diverges from the nitroreductases identified so far inPseudomonas, Burkholderia, andRalstonia, is frequently found amidst the powerful degraders of aromatic compounds.  相似文献   

7.
Many enteric bacteria express a type I oxygen-insensitive nitroreductase, which reduces nitro groups on many different nitroaromatic compounds under aerobic conditions. Enzymatic reduction of nitramines was also documented in enteric bacteria under anaerobic conditions. This study indicates that nitramine reduction in enteric bacteria is carried out by the type I, or oxygen-insensitive nitroreductase, rather than a type II enzyme. The enteric bacterium Morganella morganii strain B2 with documented hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) nitroreductase activity, and Enterobacter cloacae strain 96-3 with documented 2,4,6-trinitrotoluene (TNT) nitroreductase activity, were used here to show that the explosives TNT and RDX were both reduced by a type I nitroreductase. Morganella morganii and E. cloacae exhibited RDX and TNT nitroreductase activities in whole cell assays. Type I nitroreductase, purified from E. cloacae, oxidized NADPH with TNT or RDX as substrate. When expression of the E. cloacae type I nitroreductase gene was induced in an Escherichia coli strain carrying a plasmid, a simultaneous increase in TNT and RDX nitroreductase activities was observed. In addition, neither TNT nor RDX nitroreductase activity was detected in nitrofurazone-resistant mutants of M. morganii. We conclude that a type I nitroreductase present in these two enteric bacteria was responsible for the nitroreduction of both types of explosive.  相似文献   

8.
Three NAD(P)H-dependent nitroreductases that can transform 2,4,6-trinitrotoluene (TNT) by two reduction pathways were detected in Klebsiella sp. C1. Among these enzymes, the protein with the highest reduction activity of TNT (nitroreductase I) was purified to homogeneity using ion-exchange, hydrophobic interaction, and size exclusion chromatographies. Nitroreductase I has a molecular mass of 27 kDa as determined by SDS-PAGE, and exhibits a broad pH optimum between 5.5 and 6.5, with a temperature optimum of 30–40°C. Flavin mononucleotide is most likely the natural flavin cofactor of this enzyme. The N-terminal amino acid sequence of this enzyme does not show a high degree of sequence similarity with nitroreductases from other enteric bacteria. This enzyme catalyzed the two-electron reduction of several nitroaromatic compounds with very high specific activities of NADPH oxidation. In the enzymatic transformation of TNT, 2-amino-4,6-dinitrotoluene and 2,2′,6,6′-tetranitro-4,4′-azoxytoluene were detected as transformation products. Although this bacterium utilizes the direct ring reduction and subsequent denitration pathway together with a nitro group reduction pathway, metabolites in direct ring reduction of TNT could not easily be detected. Unlike other nitroreductases, nitroreductase I was able to transform hydroxylaminodinitrotoluenes (HADNT) into aminodinitrotoluenes (ADNT), and could reduce ortho isomers (2-HADNT and 2-ADNT) more easily than their para isomers (4-HADNT and 4-ADNT). Only the nitro group in the ortho position of 2,4-DNT was reduced to produce 2-hydroxylamino-4-nitrotoluene by nitroreductase I; the nitro group in the para position was not reduced.  相似文献   

9.
The crystal structure of the nitroreductase enzyme from Enterobacter cloacae has been determined for the oxidized form in separate complexes with benzoate and acetate inhibitors and for the two-electron reduced form. Nitroreductase is a member of a group of enzymes that reduce a broad range of nitroaromatic compounds and has potential uses in chemotherapy and bioremediation. The monomers of the nitroreductase dimer adopt an alpha+beta fold and together bind two flavin mononucleotide prosthetic groups at the dimer interface. In the oxidized enzyme, the flavin ring system adopts a strongly bent (16 degrees ) conformation, and the bend increases (25 degrees ) in the reduced form of the enzyme, roughly the conformation predicted for reduced flavin free in solution. Because free oxidized flavin is planar, the induced bend in the oxidized enzyme may favor reduction, and it may also account for the characteristic inability of the enzyme to stabilize the one electron-reduced semiquinone flavin, which is also planar. Both inhibitors bind over the pyrimidine and central rings of the flavin in partially overlapping sites. Comparison of the two inhibitor complexes shows that a portion of helix H6 can flex to accommodate the differently sized inhibitors suggesting a mechanism for accommodating varied substrates.  相似文献   

10.
Many nitroreductases are strongly inhibited by oxygen. The first intermediate of nitroreductase activity, the nitroaromatic anion free radical, cannot be detected in aerobic microsomal incubations. Even though the nitro compounds are unchanged, both nitrofurantoin and p-nitrobenzoate profoundly increase the NADPH-supported oxygen uptake. This catalytic oxygen consumption is partially reversed by superoxide dismutase, suggesting that superoxide anion free radical is being formed by the rapid air oxidation of the nitroaromatic anion radical.  相似文献   

11.
Here we described novel interactions of the mammalian selenoprotein thioredoxin reductase (TrxR) with nitroaromatic environmental pollutants and drugs. We found that TrxR could catalyze nitroreductase reactions with either one- or two-electron reduction, using its selenocysteine-containing active site and another redox active center, presumably the FAD. Tetryl and p-dinitrobenzene were the most efficient nitroaromatic substrates with a k(cat) of 1.8 and 2.8 s(-1), respectively, at pH 7.0 and 25 degrees C using 50 muM NADPH. As a nitroreductase, TrxR cycled between four- and two-electron-reduced states. The one-electron reactions led to superoxide formation as detected by cytochrome c reduction and, interestingly, reductive N-denitration of tetryl or 2,4-dinitrophenyl-N-methylnitramine, resulting in the release of nitrite. Most nitroaromatics were uncompetitive and noncompetitive inhibitors with regard to NADPH and the disulfide substrate 5,5'-dithiobis(2-nitrobenzoic acid), respectively. Tetryl and 4,6-dinitrobenzofuroxan were, however, competitive inhibitors with respect to 5,5'-dithiobis(2-nitrobenzoic acid) and were clearly substrates for the selenolthiol motif of the enzyme. Furthermore, tetryl and 4,6-dinitrobenzofuroxan efficiently inactivated TrxR, likely by alkylation of the selenolthiol motif as in the inhibition of TrxR by 1-chloro-2,4-dinitrobenzene/dinitrochlorobenzene (DNCB) or juglone. The latter compounds were the most efficient inhibitors of TrxR activity in a cellular context. DNCB, juglone, and tetryl were highly cytotoxic and induced caspase-3/7 activation in HeLa cells. Furthermore, DNCB and juglone were potent inducers of apoptosis also in Bcl2 overexpressing HeLa cells or in A549 cells. Based on these findings, we suggested that targeting of intracellular TrxR by alkylating nitroaromatic or quinone compounds may contribute to the induction of apoptosis in exposed human cancer cells.  相似文献   

12.
N-Nitroso compounds, such as N-nitrosodiethylamine (NDEA), are a versatile group of chemical carcinogens, being suspected to be involved in gastrointestinal tumors in humans. The intestinal microflora can modify a wide range of environmental chemicals either directly or in the course of enterohepatic circulation. Nitroreductases from bacteria seem to have a wide spectrum of substrates, as observed by the reduction of several nitroaromatic compounds, but their capacity to metabolize N-nitroso compounds has not been described. To elucidate the participation of nitroreductase or acetyltransferase enzymes in the mutagenic activity of NDEA, the bacterial (reverse) mutation test was carried out with the strains YG1021 (nitroreductase overexpression), YG1024 (acetyltransferase overexpression), TA98NR (nitroreductase deficient), and TA98DNP6 (acetyltrasferase deficient), and YG1041, which overexpresses both enzymes. The presence of high levels of acetyltransferase may generate toxic compounds that must be eliminated by cellular processes or can lead to cell death, and consequently decrease the mutagenic effect, as can be observed by the comparison of strain TA98DNP6 with the strains TA98 and YG1024. The slope curves for TA98 strain were 0.66 rev/microM (R(2) = 0.51) and 52.8 rev/microM (R(2) = 0.88), in the absence and presence of S9 mix, respectively. For YG1024 strain, the slope curve, in the presence of S9 mix was 6897 rev/microM (R(2) = 0.78). Our data suggest that N-nitroso compounds need to be initially metabolized by enzymes such as cytochromes P450 to induce mutagenicity. Nitroreductase stimulates toxicity, while acetyltransferase stimulates mutagenicity, and nitroreductase can neutralize the mechanism of mutagenicity generating innoccuos compounds, probably by acting on the product generated after NDEA activation.  相似文献   

13.
The purified azoreductase and nitroreductase of Clostridium perfringens, which have similar electrophoretic properties, both reacted in a Western blot (immunoblot) with a polyclonal antibody raised against the azoreductase. The activity of both enzymes was enhanced by flavin adenine dinucleotide and was inhibited by menadione, o-iodosobenzoic acid, and the antibody against azoreductase. Reduction of the azo dye Direct Blue 15 by the azoreductase was inhibited by nitroaromatic compounds. The apparent Km of the enzyme for reduction of Direct Blue 15 in the presence of 1-nitropyrene was higher than the Km with the azo dye alone, demonstrating competitive inhibition. The data show that the same protein is involved in the reduction of both azo dyes and nitroaromatic compounds.  相似文献   

14.
R P Mason  J L Holtzman 《Biochemistry》1975,14(8):1626-1632
Electron spin resonance spectra are observed during the enzymatic reduction of many nitrophenyl derivatives by rat hepatic microsomes or mitochondria. The spectra indicate that nitroaromatic anion radicals are present and are freely rotating in aqueous solution at a steady-state concentration of 0.1-6 muM. The rate of formation of p-nitrobenzoate (NBZO) dianion radical in microsomal incubates is consistent with the radical being an obligate intermediate in the reduction of NBZO to p-aminobenzoic acid. A model system consisting of NBZO, NADPH, and FMN, but no heme-containing compounds, also reduced NBZO to the NBZO dianion free radical. The steady-state concentration of the anion radicals in microsomal systems is not altered by CO. This observation, together with the results from the model system, suggests that the formation of nitroaromatic anion radicals is mediated through a flavine and not cytochrome P-450. The oxidation of the anion radical intermediate by O2 to the parent nitro compound is proposed to account for the well-known O2 inhibition of microsomal nitroreductase.  相似文献   

15.
We aimed to elucidate the role of electronic and structural parameters of nitroaromatic compounds in their two-electron reduction by NAD(P)H:quinone oxidoreductase (NQO1, DT-diaphorase, EC 1.6.99.2). The multiparameter regression analysis shows that the reactivity of nitroaromatic compounds (n=38) increases with an increase in their single-electron reduction potential and the torsion angle between nitrogroup(s) and the aromatic ring. The binding efficiency of nitroaromatics in the active center of NQO1 exerted a less evident role in their reactivity. The reduction of nitroaromatics is characterized by more positive entropies of activation than the reduction of quinones. This points to a less efficient electronic coupling of nitroaromatics with the reduced isoalloxazine ring of FAD, and may explain their lower reactivity as compared to quinones. Another important but poorly understood factor enhancing the reactivity of nitroaromatics is their ability to bind at the dicumarol/quinone binding site in the active center of NQO1.  相似文献   

16.
Enterobacter cloacae NAD(P)H:nitroreductase catalyzes the reduction of a series of nitroaromatic compounds with steady-state bimolecular rate constants (kcat/Km) ranging from 10(4) M(-1) s(-1) to 10(7) M(-1) s(-1), and oxidizing 2 moles NADH per mole mononitrocompound. Oxidation of excess NADH by polynitrobenzenes including explosives 2,4,6-trinitrotoluene (TNT) and 2,4,6-trinitrophenyl-N-methylnitramine (tetryl), has been observed as a slower secondary process, accompanied by O2 consumption. This type of 'redox cycling' was not related to reactions of nitroaromatic anion-radicals, but was caused by the autoxidation of relatively stable reaction products. The logs kcat/Km of all the compounds examined exhibited parabolic dependence on their enthalpies of single-electron- or two-electron (hydride) reduction, obtained by quantum mechanical calculations. This type of quantitative structure-activity relationships shows that the reactivity of nitroaromatics towards E. cloacae nitroreductase depends mainly on their hydride accepting properties, but not on their particular structure, and does not exclude the possibility of multistep hydride transfer.  相似文献   

17.
Reduction of polynitroaromatic compounds: the bacterial nitroreductases   总被引:1,自引:0,他引:1  
Most nitroaromatic compounds are toxic and mutagenic for living organisms, but some microorganisms have developed oxidative or reductive pathways to degrade or transform these compounds. Reductive pathways are based either on the reduction of the aromatic ring by hydride additions or on the reduction of the nitro groups to hydroxylamino and/or amino derivatives. Bacterial nitroreductases are flavoenzymes that catalyze the NAD(P)H-dependent reduction of the nitro groups on nitroaromatic and nitroheterocyclic compounds. Nitroreductases have raised a great interest due to their potential applications in bioremediation, biocatalysis, and biomedicine, especially in prodrug activation for chemotherapeutic cancer treatments. Different bacterial nitroreductases have been purified and their biochemical and kinetic parameters have been determined. The crystal structure of some nitroreductases have also been solved. However, the physiological role(s) of these enzymes remains unclear. Nitroreductase genes are widely spread within bacterial genomes, but are also found in archaea and some eukaryotic species. Although studies on regulation of nitroreductase gene expression are scarce, it seems that nitroreductase genes may be controlled by the MarRA and SoxRS regulatory systems that are involved in responses to several antibiotics and environmental chemical hazards and to specific oxidative stress conditions. This review covers the microbial distribution, types, biochemical properties, structure and regulation of the bacterial nitroreductases. The possible physiological functions and the biotechnological applications of these enzymes are also discussed.  相似文献   

18.
Metabolism of 1,8-dinitropyrene by Salmonella typhimurium   总被引:1,自引:0,他引:1  
Earlier work has shown that many nitroaromatic and nitroheterocyclic compounds are directly 'activated' to their ultimate mutagenic forms through the action of bacterial nitroreductase enzymes. However, in the case of 1,8-dinitropyrene (DNP) and certain other nitroarenes the pathway of activation is more complex and neither the identity of the ultimate mutagens nor the nature of the DNA adducts formed are known. We now show that Salmonella typhimurium strains TA98 and TA1538, which are sensitive to DNP and have wild type nitroreductase complements, do metabolize DNP to 1-amino-8-nitropyrene (ANP) and 1,8- diaminopyrene (DAP) but that these compounds are much weaker mutagens than DNP. These two strains (TA98 and TA1538) contain two separable components of nitroreductase activity as determined using nitrofurazone as the substrate. The major component, at least, is capable of reducing both 1-nitropyrene (NP) and DNP although the rates are much lower than with nitrofurazone. TA98NR , a mutant of TA98 that is resistant to nitrofurazone and NP but not to DNP, lacked the major nitroreductase but retained two minor components. In contrast, a mutant ( DNP6 ) which is resistant to DNP (but not to NP) contained a full complement of nitroreductases. When the metabolism of [3H]DNP by crude extracts of TA98 was re-examined, previously undetected metabolites were found. These were more polar than DAP and ANP and were also seen when TA98NR was used as the source of enzyme. These metabolites were not formed when enzymes from TA98DNP6 or TA98NR / DNP6 were used. This work supports the notion that some enzymic activity other than (or in addition to) nitroreductase is required for the activation of DNP and that the new polar metabolites may be related to this process.  相似文献   

19.
The predominant bacterial pathway for nitrobenzene (NB) degradation uses an NB nitroreductase and hydroxylaminobenzene (HAB) mutase to form the ring-fission substrate ortho-aminophenol. We tested the hypothesis that constructed strains might accumulate the aminophenols from nitroacetophenones and other nitroaromatic compounds. We constructed a recombinant plasmid carrying NB nitroreductase (nbzA) and HAB mutase A (habA) genes, both from Pseudomonas pseudoalcaligenes JS45, and expressed the enzymes in Escherichia coli JS995. IPTG (isopropyl-beta-D-thiogalactopyranoside)-induced cells of strain JS995 rapidly and stoichiometrically converted NB to 2-aminophenol, 2-nitroacetophenone (2NAP) to 2-amino-3-hydroxyacetophenone (2AHAP), and 3-nitroacetophenone (3NAP) to 3-amino-2-hydroxyacetophenone (3AHAP). We constructed another recombinant plasmid containing the nitroreductase gene (nfs1) from Enterobacter cloacae and habA from strain JS45 and expressed the enzymes in E. coli JS996. Strain JS996 converted NB to 2-aminophenol, 2-nitrotoluene to 2-amino-3-methylphenol, 3-nitrotoluene to 2-amino-4-methylphenol, 4-nitrobiphenyl ether to 4-amino-5-phenoxyphenol, and 1-nitronaphthalene to 2-amino-1-naphthol. In larger-scale biotransformations catalyzed by strain JS995, 75% of the 2NAP transformed was converted to 2AHAP, whereas 3AHAP was produced stoichiometrically from 3NAP. The final yields of the aminophenols after extraction and recovery were >64%. The biocatalytic synthesis of ortho-aminophenols from nitroacetophenones suggests that strain JS995 may be useful in the biocatalytic production of a variety of substituted ortho-aminophenols from the corresponding nitroaromatic compounds.  相似文献   

20.
Enterobacter cloacae NAD(P)H:nitroreductase (NR; EC 1.6.99.7) catalyzes the reduction of a series of nitroaromatic compounds with steady-state bimolecular rate constants (kcat/Km) ranging from 10(4) to 10(7) M(-1) s(-1). In agreement with a previously proposed scheme of two-step four-electron reduction of nitroaromatics by NR (Koder, R. L., and Miller, A.-F. (1998) Biochim. Biophys. Acta 1387, 395-405), 2 mol NADH per mole mononitrocompound were oxidized. An oxidation of excess NADH by polinitrobenzenes, including explosives 2,4,6-trinitrotoluene (TNT) and 2,4,6-trinitrophenyl-N-methylnitramine (tetryl), has been observed as a slower secondary process, accompanied by O2 consumption. This type of "redox cycling" was not related to reactions of nitroaromatic anion-radicals, but was caused by the autoxidation of relatively stable reaction products. The initial reduction of tetryl and other polinitrophenyl-N-nitramines by E. cloacae NR was analogous to a two-step four-electron reduction mechanism of TNT and other nitroaromatics. The logs kcat/Km of all the compounds examined exhibited parabolic dependence on their enthalpies of single-electron or two-electron (hydride) reduction, obtained by quantum mechanical calculations. This type of quantitative structure-activity relationship shows that the reactivity of nitroaromatics towards E. cloacae nitroreductase depends mainly on their hydride accepting properties, but not on their particular structure, and does not exclude the possibility of multistep hydride transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号