首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Five carbohydrate analogs of N-acetylmuramoyl-l-alanyl-d-isoglutamine have been synthesized from benzyl 2-acetamido-2-deoxy-3-O-[d-1-(methoxycarbonyl)ethyl]-α-d-glucopyranoside (1) and the corresponding 6-O-benzoyl derivative (2). Chlorination of 1 and 2 with triphenylphosphine in carbon tetrachloride gave the 4,6-dichloro compound 3 and the 6-O-benzoyl-4-chloro compound (4), which were treated with tributyltin hydride, to yield benzyl 2-acetamido-2,4,6-trideoxy-3-O-[d-1-(methoxycarbonyl)ethyl]-α-d-xylo-hexopyranoside (6) and benzyl 2-acetamido-6-O-benzoyl-2,4-dideoxy-3-O-[d-1-(methoxycarbonyl)ethyl]-α-d-xylo-hexopyranoside (7), respectively. Methanesulfonylation of 8, derived from 7 by debenzoylation, gave the 6-methanesulfonate, which underwent displacement with azide ion to afford benzyl 2-acetamido-6-azido-2,4,6-trideoxy-3-O-[d-1-(methoxycarbonyl)ethyl]-α-d-xylo-hexopyranoside (10). Hydrolysis of the methyl ester group in compounds 3, 5 (debenzoylated 4), 6, 8, and 10 gave the corresponding free acids, which were coupled with l-alanyl-d-isoglutamine benzyl ester, to yield the dipeptide derivatives in excellent yields. Hydrogenation of the dipeptide derivatives thus obtained gave the five carbohydrate analogs of N-acetylmuramoyl-l-alanyl-d-isoglutamine, respectively, in good yields. The immunoadjuvant activity of the N-acetylmuramoyl-dipeptide analogs was examined.  相似文献   

2.
《Carbohydrate research》1986,147(2):237-245
The reaction of diglycol- and thiodiglycol-aldehyde (1a,b) with cyanoacetamide yields cis-3,5-diacetoxy-4-carbamoyl-4-cyano-tetrahydropyran (2a) and -tetrahydrothiopyran (2b). When this reaction is applied to (2S)-2-(3-ethoxycarbonyl-2-methyl-5-furyl)-3,5-dihydroxy-1,4-dioxane (1c), (2S)-3,5-dihydroxy-2-(3-methoxycarbonyl-2-methyl-5-furyl)-1,4-dioxane (1d), and (2S,3R,5S)-2-(3-acetyl-2-methyl-5-furyl)-3,5-dihydroxy-1,4-dioxane (1e), 5-(3-carbamoyl-3-cyano-3-deoxy-β-d-xylo-pentopyranosyl)-3-ethoxycarbonyl-2-methylfuran (2c), 5-(2,4-di-O-acetyl-3-carbamoyl-3-cyano-3-deoxy-β-d-xylo-pentopyranosyl)-3-methoxycarbonyl-2-methylfuran (2e), and 3-acetyl-5-(2,4-di-O-acetyl-3-carbamoyl-3-cyano-3-deoxy-β-d-xylo-pentopyranosyl)-2-methylfuran (2f), respectively, are formed with (4S,5S)-4-carbamoyl-4-cyano-2-(3-ethoxycarbonyl-2-methyl-5-furyl)-5-hydroxy-5,6-dihydropyran (3a) and (4S,5S)-4-carbamoyl-4-cyano-5-hydroxy-2-(3-methoxycarbonyl-2-methyl-5-furyl)-5,6-dihydropyran (3b) as minor products. The dehydration of 2a,b, 5-(2,4-di-O-acetyl-3-carbamoyl-3-cyano-3-deoxy-β-d-xylo-pentopyranosyl)-3-ethoxycarbonyl-2-methylfuran (2d), 2e, and 2f yields cis-3,5-diacetoxy-4,4-dicyano-tetrahydropyran and -tetrahydrothiopyran (2l,m), and the 5-(2,4-di-O-acetyl-3,3-dicyano-3-deoxy-β-d-erythro-pentopyranosyl) derivatives (2n–p) of 3-ethoxycarbonyl-2-methylfuran, 3-methoxycarbonyl-2-methylfuran, and 3-acetyl-2-methylfuran, respectively.  相似文献   

3.
Incubation of o-nitrophenyl 6-deoxy-β-d-xylo-hex-5-enopyranoside (1) with emulin β-d-glucosidase gave, instead of the expected 6-deoxy-d-xylo-hexos-5-ulose (3), o-nitrophenyl 6-deoxy-3-O-(6-deoxy-β-d-xylo-hex-5-enopyranosyl)-β-d-xylo-hex-5-enopyranoside (2) in high yield (≈90% under optimal conditions). The structure of 2 was established from spectroscopic data and by correlation with compounds synthesised definitively. The specificity of the transfer reaction is discussed as an argument for an acceptor or aglycon binding-site.  相似文献   

4.
The use of the microorganism Sporotrichum sulfurescens (ATCC 7159) to oxygenate organic molecules has been extended to several dialkylbenzenes. Oxygenation of 1,4-di-t-butylbenzene (1) gave 4-t-butyl(1-hydroxy-2-methyl)isopropylbenzene (2) and 1,4-di-(1-hydroxy-2-methyl)isopropylbenzene (3); of 1,4-diisopropylbenzene (4) gave (R,R)-1,4-di-(1-hydroxy)isopropylbenzene (5); of 1,3-diisopropylbenzene (6) gave 1,3-di-(2-hydroxy)isopropylbenzene (7), 3-(1-hydroxy)isopropyl-(2-hydroxy)isopropylbenzene (8), and 1,3-di-(1-hydroxy)isopropylbenzene (9); and of p-isobutylisopropylbenzene (20) gave 1-(p-2-hydroxyisopropylphenyl)-2-methylpropan-2-ol (15) and 1-(p-1-hydroxyisopropylphenyl)-2-methylpropan-2-ol (16). Monohydroxydialkylbenzenes also served as useful substrates in this reaction as suggested by the fact that 2 is an intermediate in the formation of 3 from 1. Oxygenation of 1-(p-isopropylphenyl)-2-methylpropan-2-ol (14), conveniently prepared from 2-(p-isopropylphenyl)propene (12) via oxygenative isomerization with thallium trinitrate to 13 followed by addition of methyl magnesium bromide, gave 15 and 16. Oxygenation of 2-(p-isobutylphenyl)propan-2-ol (18) gave 15, 2-(p-isobutylphenyl)-propan-1,2-diol (21), and 1-(p-2-hydroxyisopropylphenyl)-2-methylpropan-3-ol (22). Compound 16, obtained from substrate 14, was converted to (2R)-2-[4-(2-hydroxy-2-methylpropyl)phenyl]propionic acid (11), the enantiomer of a metabolite of the antiinflammatory agent, 2-(4-i-butyl)phenylpropionic acid (10).  相似文献   

5.
2-Acetamido-5-amino-2,5-dideoxy-d-xylopyranosyl hydrogensulfite (11) has been synthesized from benzyl 2-(benzyloxycarbonylamino)-2-deoxy-5,6-O-isopro-pylidene-β-d-glucofuranoside (1). O-Deisopropylidenation of 1 gave the triol 2, which was converted, via oxidative cleavage at C-5-C-6 and subsequent reduction, into the related benzyl β-d-xylofuranoside derivative (3). Catalytic reduction of benzyl 2-(benzyloxycarbonylamino)-2-deoxy-5-O-tosyl-β-d-xylofuranoside, derived from 3 by selective tosylation, and subsequent N-acetylation, afforded benzyl 2-acetamido-2-deoxy-5-O-tosyl-β-d-xylofuranoside, which was treated with sodium azide to give the corresponding 5-azido derivative (6). (Tetrahydropyran-2-yl)ation of the product formed by hydrolysis of 6 gave 2-acetamido-5-azido-2,5-dideoxy-1,3- di-O-(tetrahydropyran-2-yl)-d-xylofuranose (9). Treatment of 2-acetamido-5-amino-2,5-dideoxy-1,3-di-O-(tetrahydropyran-2-yl)-d-xylofuranose, derived from 9 by reduction, with sulfur dioxide in water gave 11. Hydrogenation of 6 and subsequent acetylation yielded 3-acetamido-4,5-diacetoxy-1-acetyl-xylo-piperidine. Evidence in support of the structures assigned to the new derivatives is presented.  相似文献   

6.
Selective esterification reactions of 1,6-anhydro-3-deoxy-β-D-xylo-hexopyranose(1), 1,6-anhydro-β-D-glucopyranose (7), and several derivatives of 7, were conducted with an acid chloride or acid anhydride in pyridine. Reaction of 1 with p-toluenesulfonyl chloride and with benzoyl chloride gave 70 and 63%, respectively, of the 2-esters. The 2-methyl and 2-benzyl ethers of 7, both having strongly hydrogen-bonded C-4 hydroxyl group, reacted with p-toluenesulfonyl chloride to yield the 4-monosulfonates (71 and 74%, respectively). Esterification of the 2-methyl ether and 2-p-toluenesulfonate of 7 with p-toluenesulfonic anhydride instead of with p-toluenesulfonyl chloride led to increased yields of the 4-p-toluenesulfonates after a shorter reaction-time.  相似文献   

7.
Microbial transformation of ursolic acid (1) by Bacillus megaterium CGMCC 1.1741 was investigated and yielded five metabolites identified as 3-oxo-urs-12-en-28-oic acid (2); 1β,11α-dihydroxy-3-oxo-urs-12-en-28-oic acid (3); 1β-hydroxy-3-oxo-urs-12-en-28, 13-lactoe (4); 1β,3β, 11α-trihydroxyurs-12-en-28-oic acid (5) and 1β,11α-dihydroxy-3-oxo-urs-12-en-28-O-β-d-glucopyranoside (6). Metabolites 3, 4, 5 and 6 were new natural products. Their nitric oxide (NO) production inhibitory activity was assessed in lipopolysaccharide (LPS) – stimulated RAW 264.7 cells. Compounds 3 and 4 exhibited significant activities with the IC50 values of 1.243 and 1.711 μM, respectively. A primary structure-activity relationship was also discussed.  相似文献   

8.
Both 5-thio-D-ribose and 5-thio-D-xylose react with acetone and 2,2-dimethoxypropane, respectively, in the presence of acids to give 1,2:3,4-di-O-isopropylidene-5-thio-α-D-ribo- and -xylo-pyranoses (9 and 8); no furanoid products were detected. Partial hydrolysis of the xylo-diacetal 8 gave 1,2-O-isopropylidene-5-thio-α-D-xylopyranose, but a monoacetal could not be obtained from the ribo-diacetal 9. The methyl 5-thio-D-ribopyranosides (12) also react with acetone, giving only the 3,4-acetal from the α anomer 12a, and a separable mixture of 2,3- and 3,4-acetals from the β anomer 12b.  相似文献   

9.
Diazomethane reacted with methyl 3,6-dideoxy-3-nitro-α-l-glucopyranoside (1) under catalysis by boron trifluoride to give the 2-O-methyl and the 2,4-di-O-methyl derivative (2 and 3). Similarly, the 4-acetate (4) of 1 afforded the 4-acetate (5) of 2. Boron trifluoride-catalyzed acetylation of 2 at about ?60° gave 5 whereas, at 0°, acetolysis took place producing 1,4-di-O-acetyl-3,6-dideoxy-2-O-methyl-3-nitro-α-l-glucopyranose (6). Diazomethane treatment of methyl 3,4,6-trideoxy-3-nitro-α-l-erythro- and -α-l-threo-hex-3-enopyranosides 7 and 8 furnished the corresponding 2-O-methyl derivatives 9 and 10. With triphenylphosphine and carbon tetrachloride, 2 yielded methyl 4-chloro-3,4,6-trideoxy-2-O-methyl-3-nitro-α-l-galactopyranoside (11) which was dehydrochlorinated to 9. Borohydride reduction of 9 gave methyl 3,4,6-trideoxy-2-O-methyl-3-nitro-α-l-xylo-hexopyranoside (12). Catalytic hydrogenation of 3 and 12 afforded the corresponding amino sugar hydrochlorides 13 and 15. Treatment of 5 with ammonia gave a 4-amino-3-nitro glycoside (isolated as the hydrochloride 17) hydrogenation of which led to methyl 3,4-diamino-3,4,6-trideoxy-2-O-methyl-α-l-glucopyranoside dihydrochloride (19). The N-acetyl derivatives (14, 16, 18, and 20) of the four new amino sugars were prepared.  相似文献   

10.
Anti-Markovnikov hydration of the olefinic bond of 5,6-dideoxy-1,2-O-isopropylidene-3-O-p-tolylsulfonyl-α- d-xylo-hex-5-enofuranose (4) and methyl 5,6-dideoxy-2,3-di-O-p-tolylsulfonyl-α-l-arabino-hex-5-enofuranoside (11) by the addition of iodine trifluoroacetate, followed by hydrogenation in the presence of a Raney nickel catalyst in ethanol containing triethylamine, afforded 5-deoxy-1,2-O-ísopropylidene-3-O-p-tolylsulfonyl-α-d-xylo-hexofuranose (6) and methyl 5-deoxy-2,3-di-O-p-tolylsulfonyl-α-d-arabino-hexofuranoside (14), respectively. 5-deoxy-d-xylo-hexose and 5-deoxy-l-arabino-hexose were prepared from 6 and 14, respectively, by photolytic O-detosylation and acid hydrolysis. Syntheses of 9-(5-deoxy-β-d-xylo-hexofuranosyl)-adenine and 9-(5-deoxy-α-l-arabino-hexofuranosyl)adenine are also described. Application of the sodium naphthalene procedure, for O-detosylation, to 11 is reported in connection with an alternative synthetic route to methyl 5-deoxy-α-l-arabino- hexofuranoside.  相似文献   

11.
Condensation of 1,2:5,6-di-O-isopropylidene-α-d-xylo-hexofuranos-3-ulose (1) with diethyl cyanomethylphosphonate afforded a mixture of the cis- and trans-3-cyanomethylene-3-deoxy-1,2:5,6-di-O-isopropylidene-α-d-xylo-hexofuranoses (2) in 80% yield. Catalytic reduction of 2 yielded 3-C-cyanomethyl-3-deoxy-1,2:5,6-di-O-isopropylidene-α-d-gulofuranose (4) exclusively. Palladium and hydrogen was found to rearrange the exocyclic double bond of 2 to give the 3,4-ene (3). Catalytic reduction of 3 also proceeded stereospecifically to yield 4. Selective hydrolysis of 4 yielded the diol 5, which was cleaved with periodate and the product reduced with sodium borohydride to afford crystalline 3-C-cyanomethyl-3-deoxy-1,2-O-isopropylidene-β-l-lyxofuranose (6) in 87% yield. Catalytic reduction of the latter with hydrogen and platinum in the presence of acetic anhydride and ethanol gave the crystalline l-amino sugar, 3-C-(2-acetamidoethyl)-3-deoxy-1,2-O-isopropylidene-β-l-lyxofuranose (7) in 92% yield.  相似文献   

12.
Addition of 2-amino-2-deoxy-β-D-glucopyranose to dimethyl acetylenedicarboxylate afforded an almost quantitative yield of amorphous 2-deoxy-2-(1,2-dimethoxycarbonylvinyl)amino-D-glucose (5). Acetylation of this adduct gave crystalline 1,3,4,6-tetra-O-acetyl-2-deoxy-2-[(Z)-1,2-dimethoxycarbonylvinyl]amino-α-D-glucopyranose (6a); the corresponding β-D anomer (6b) was obtained by addition of 1,3,4,6-tetra-O-acetyl-2-amino-2-deoxy-β-Dglucopyranose to dimethyl acetylenedicarboxylate. O-Deacetylation of tetra-acetate 6a with barium methoxide in methanol occurred selectively at C-1, yielding enamine 6c derived from 3,4,6-tri-O-acetyl-2-amino-2-deoxy-α-D-glucopyranose. Conversion of the crude adduct 5 into 3-methoxycarbonyl-5-(D-arabino-tetrahydroxybutyl)-2-pyrrolecarboxylic acid (7) took place by heating in water or in slightly basic media in yields up to 83%. Acetylation of 7 gave the tricyclic derivative 8, and its periodate oxidation afforded 5-formyl-3-methoxycarbonyl-2-pyrrolecarboxylic acid (9). Oxidation of 9 with alkaline silver oxide yielded 3-methoxy-carbonyl-2,5-pyrroledicarboxylic acid (10).  相似文献   

13.
The chemical modifications induced in polycrystalline cycloamylose hydrates during γ-irradiation have been investigated by using g.l.c-m.s. to analyse the monosaccharide mixtures formed on hydrolysis. Unchanged substrate and material retaining the original cyclic structure were removed by precipitation prior to hydrolysis, and the products therefore reflect the effect of the radical-induced opening of the cycloamylose ring structure. The following products were identified: glucose and glucono-1, 5-lactone (1), 4-deoxy-xylo-hexose (2), arabinose (3), ribose (4), 2-deoxy-erythro-pentose (5), 3-deoxy-erythro-hexos-4-ulose (6), xylo-hexos-5-ulose (7), 6-deoxy-xylo-hexos-5-ulose (8), 5-deoxy-xylo-hexodialdose (9), 2,6-dideoxyhexos-5-ulose (10), xylose (11), 5-deoxypentose (12), 3-deoxypentulose (13), erythrose (14), and threose (15). Products 1-9 appear to be terminals of the “anhydroglucose” chain. Established free-radical reactions, typical for carbohydrates. are invoked to account for these products.  相似文献   

14.
Treatment of methyl tri-O-acetyl-β-D-arabinopyranoside (1a) with hydrogen bromide in benzene or in acetic acid gave, in addition to the pyranosyl bromide (2a), a considerable proportion of tri-O-acetyl-D-arabinofuranosyl bromide (5). Similar treatment of methyl tri-O-benzoyl-β-D-arabinopyranoside (1b) gave a good yield of the pyranosyl bromide (2b); no furanoid derivative was formed. Ring contraction also took place when methyl 4-O-acetyl-2,3-di-O-benzoyl-β-D-arabinopyranoside (7) was treated with hydrogen bromide, whereas the isomeric 3-O-acetyl-2,4-di-O-benzoyl compound (12) gave the pyranosyl bromide 13 in high yield. Thus, methyl pyranosides with an O-acetyl group at C-4 undergo ring contraction on treatment with hydrogen bromide. The corresponding compounds with O-benzoyl groups at C-4 gave pyranosyl bromides only.  相似文献   

15.
Sunlight-mediated photooxygenation of 3-O-acetyl and 3-O-methyl derivatives of 1,2-O-alkylidene-5(E)-eno-5,6,8-trideoxy-α-d-xylo-oct-1,4-furano-7-uloses (1a-e) in carbon tetrachloride solution gave stable 4,7-epidioxy derivatives in 4R (2a-e) and 4S (3a-e) configurations. The presence of an endo alkyl, on the 1,2-O-alkylidene group and its size, resulted in an increase of the yield of the 4S isomers. 3-O-Acetyl derivatives yielded products as a mixture of C-7 anomers, whereas 3-O-methyl derivatives gave pure single stereoisomers.  相似文献   

16.
Addition of ethyl isocyanoacetate to 3-O-benzyl-1,2-O-isopropylidene-α-D-ribo-pentodialdo-1,4-furanose in ethanolic sodium cyanide gave two oxazolines that were hydrolysed during chromatography to two isomeric ethyl 3-O-benzyl-6-deoxy-6-formamido-1,2-O-isopropylidene-heptofuranuronates. Similarly, 1,2-O-isopropyl-idene-3-O-methyl-α-D-xylo-pentodialdo-1,4-furanose gave the 3-O-methyl-heptofuranuronates 7 and 11. Reduction of 7 and 11 gave N-methylamino esters that exhibited Cotton effects from which the configurations at C-6 of 7 and 11 were deduced. The chiralities at C-5 of 7 and 11 were established by tetrahydropyranlation of 7 and 11, followed by consecutive treatment with bis(2-methoxyethoxy)aluminium hydride, periodate, sodium borohydride, and dilute acid, to give 1,2-O-isopropylidene-3-O-methyl-α-D-glucofuranose and its β-L-ido epimer, respectively. Attempts to methylate HO-5 of 7 and 11 resulted in elimination. On formylaminomethylenation (ethyl isocyanoacetate and potassium hydride in tetrahydrofuran), 3-O-benzyl-1,2-O-isopropylidene-α-D-ribo-pentodialdo-1,4-furanose and its 3-O-methyl-α-D-xylo epimer each gave (E)- and (Z)-mixtures of alkenes that were hydrogenated to give mixtures of 5,6-dideoxy-6-formamido-heptofuranuronates.  相似文献   

17.
5,6-Dideoxy-6-C-nitro-5-(phenylphosphino)-d-glucopyranose was prepared by addition of phenylphosphine to 3-O-acetyl-5,6-dideoxy-1,2-O-isopropylidene-6-C-nitro-α-d-xylo-hex-5-enofuranose, followed by hydrolysis of the resulting 3-O-acetyl-5,6-dideoxy-1,2-O-isopropylidene-6-C-nitro-5-(phenylphosphino)-d-glucofuranose (10). Acetylation of 10 gave the crystalline 1,2,3,4-tetraacetate (16). 5,6-Dideoxy-6-C-nitro-5-(phenylphosphinyl)-d-glucopyranose (15) was obtained by oxidation of 10, and hydrolysis of the resulting 5-phenylphosphinyl compound. Acetylation of 15 gave the 1,2,3,4-tetraacetate (17). Although the n.m.r. spectrum of 17 was complex, the n.m.r. spectrum of 16 was rather simple. The n.m.r. data showed that 16 is the α anomer in the 4C1(d) conformation.  相似文献   

18.
Seven homoisoflavonoids and one stilbenoid, 3-(4′-methoxybenzyl)-6,7-dihydroxy-5-methoxychroman-4-one (1) which is new; 3-(4′-methoxybenzyl)-6-hydroxy-5,7-dimethoxychroman-4-one (2); 3-(4′-methoxybenzyl)-5,7-dimethoxychroman-4-one (3); 3-(3′-hydroxy-4′-methoxybenzyl)-5,7-dimethoxychroman-4-one (4); 3-(4′-methoxybenzylidene)-5,7-dihydroxy-6-methoxychroman-4-one (5); 3-(4′-hydroxybenzylidene)-5,7-dihydroxy-6-methoxychroman-4-one (6); 3-(4′-hydroxybenzylidene)-5,7-dihydroxychroman-4-one (7) and 4,3′,5′-trihydroxy-3-methoxystilbene (8), were isolated from the yellow inter-bulb deposits from Scilla nervosa. The structures of these compounds were elucidated by 1D- and 2D-NMR and mass spectrometry. A number of extracts, fractions and compounds tested displayed bacterostatic activity with MICs ranging between 0.156 and 1.250 mg/ml. Two extracts displayed significant α-glucosidase inhibitory activity and a number of extracts, fractions and compounds showed strong antioxidant activity with, compounds 1, 2 and 8 displaying lower MECs than the positive control ascorbic acid (0.0156 mg/ml).  相似文献   

19.
Dehydration of the 3-epimeric 2-hexulose phenylosazones l-xylo-hexulose phenylosazone and l-lyxo-hexulose phenylosazone afforded 3,6-anhydro-l-lyxo-2-hexulose phenylosazone (2) as the preponderant isomer from both. The identity of 2 was obtained by t.l.c., and by acetylation followed by comparison of the products. Acetylation of 2 with acetic anhydride-pyridine afforded the di-O-acetyl derivative 4, and further acetylation gave the N-acetyldi-O-acetyl derivative 5. Refluxing of 2 with copper sulfate afforded a C-nucleoside analog, namely, 2-phenyl-4-α-l-threofuranosyl-1,2,3-osotriazole (6). The anomeric configuration was determined by n.m.r. spectroscopy. The stereochemical course of the dehydration process and the mass spectra of compounds 2, 4, 5, and 6 are discussed.  相似文献   

20.
An efficient and practical strategy for the synthesis of unknown azetidine iminosugars (2S,3R,4S)-2-((R)-1,2-dihydroxyethyl)-3-hydroxy-4-(hydroxymethyl)azetidine 2, (2S,3r,4R)-3-hydroxy-2,4-bis(hydroxymethyl)azetidine 3 and (2S,3R,4S)-3-hydroxy-4-(hydroxymethyl)-N-methylazetidine-2-carboxylic acid 4, starting from the d-glucose has been reported. The methodology involves preparation of the 3-amino-N-benzyloxycarbonyl-3-deoxy-6-O-tert-butyldimethylsillyl-1,2-O-isopropylidene-α-d-glucofuranose 9, which was converted to the C-5-OMs derivative 11. Intramolecular nucleophilic displacement of the C-5-OMs group with in situ generated 3-amino functionality provided the required key azetidine ring skeletons 10 with additional hydroxymethyl group. Removal of 1,2-acetonide protection, followed by reduction and hydrogenolysis afforded azetidine iminosugar 2. Alternatively, removal of 1,2-acetonide group and chopping of C1-anomeric carbon gave C2-aldehyde that on reduction or oxidation followed by hydrogenolysis gave 2,4-bis(hydroxymethyl) azetidine iminosugars 3 and N-methylazetidine-2-carboxylic acid 4 respectively. The glycosidase inhibitory activity of 24 iminosugars was screened against various glycosidase enzymes and compared with a standard miglitol. Amongst synthesized targets, the compound 2 was found to be more potent amyloglucosidase inhibitor than miglitol. These results were supported by molecular docking studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号