首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Aggregated amyloid beta-peptide (A beta) is the primary constituent of the extracellular plaques and perivascular amyloid deposits associated with Alzheimer's disease (AD). Deposition of the cerebral amyloid plaques is thought to be central to the disease progression. One such molecule that has previously been shown to 'dissolve' deposited amyloid in post-mortem brain tissue is bathocuproine (BC). In this paper 1H NMR chemical shift analysis and pulsed field gradient NMR diffusion measurements were used to study BC self-association and subsequent binding to A beta. The results show that BC undergoes self-association as its concentration increases. The association constant of BC dimerization, Ka, was estimated to be 0.64 mM(-1) at 25 degrees C from 1H chemical shift analysis. It was also found that dimerization of BC appeared to be essential for its binding to A beta. From the self-association constant of BC, Ka, the fraction of dimeric BC in the complex was obtained and the dissociation constant, Kd, of BC bound to A beta40 peptide was then determined to be approximately 1 mM.  相似文献   

2.
    
Amphipathic peptides composed of alternating polar and nonpolar residues have a strong tendency to self‐assemble into one‐dimensional, amyloid‐like fibril structures. Fibrils derived from peptides of general (XZXZ)n sequence in which X is hydrophobic and Z is hydrophilic adopt a putative β‐sheet bilayer. The bilayer configuration allows burial of the hydrophobic X side chain groups in the core of the fibril and leaves the polar Z side chains exposed to solvent. This architectural arrangement provides fibrils that maintain high solubility in water and has facilitated the recent exploitation of self‐assembled amphipathic peptide fibrils as functional biomaterials. This article is a critical review of the development and application of self‐assembling amphipathic peptides with a focus on the fundamental insight these types of peptides provide into peptide self‐assembly phenomena. © 2011 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 98: 169–184, 2012.  相似文献   

3.
4.
    
β‐Site amyloid precursor protein cleaving enzyme 1 (BACE1) is known to be involved in the production of amyloid β‐peptide in Alzheimer's disease and is a major target for current drug design. We previously reported substrate‐based peptidomimetics, KMI‐compounds as potent BACE1 inhibitors. In this study, we designed and synthesized tetrapeptides as low molecular‐sized inhibitors. These exhibited high potency against recombinant BACE1, with the highest IC50 value of 34.6 nM from KMI‐927. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

5.
    
Amyloid‐β peptide (Aβ) oligomers may represent the proximal neurotoxin in Alzheimer's disease. Single‐molecule microscopy (SMM) techniques have recently emerged as a method for overcoming the innate difficulties of working with amyloid‐β, including the peptide's low endogenous concentrations, the dynamic nature of its oligomeric states, and its heterogeneous and complex membrane interactions. SMM techniques have revealed that small oligomers of the peptide bind to model membranes and cells at low nanomolar‐to‐picomolar concentrations and diffuse at rates dependent on the membrane characteristics. These methods have also shown that oligomers grow or dissociate based on the presence of specific inhibitors or promoters and on the ratio of Aβ40 to Aβ42. Here, we discuss several types of single‐molecule imaging that have been applied to the study of Aβ oligomers and their membrane interactions. We also summarize some of the recent insights SMM has provided into oligomer behavior in solution, on planar lipid membranes, and on living cell membranes. A brief overview of the current limitations of the technique, including the lack of sensitive assays for Aβ‐induced toxicity, is included in hopes of inspiring future development in this area of research.  相似文献   

6.
Oxidative damage is associated with Alzheimer's disease and mild cognitive impairment, but its relationship to the development of neuropathological lesions involving accumulation of amyloid-beta (Abeta) peptides and hyperphosphorylated tau protein remains poorly understood. We show that inducing oxidative stress in primary chick brain neurons by exposure to sublethal doses of H(2)O(2 )increases levels of total secreted endogenous Abeta by 2.4-fold after 20 h. This occurs in the absence of changes to intracellular amyloid precursor protein or tau protein levels, while heat-shock protein 90 is elevated 2.5-fold. These results are consistent with the hypothesis that aging-associated oxidative stress contributes to increasing Abeta generation and up-regulation of molecular chaperones in Alzheimer's disease.  相似文献   

7.
    
Microglia integrate within the neural tissue with a distinct ramified morphology through which they scan the surrounding neuronal network. Here, we used a digital tool for the quantitative morphometric characterization of fine cortical microglial structures in mice, and the changes they undergo with aging and in Alzheimer's‐like disease. We show that, compared with microglia in young mice, microglia in old mice are less ramified and possess fewer branches and fine processes along with a slightly increased proinflammatory cytokine expression. A similar microglial pathology appeared 6–12 months earlier in mouse models of Alzheimer's disease (AD), along with a significant increase in brain parenchyma lacking coverage by microglial processes. We further demonstrate that microglia near amyloid plaques acquire unique activated phenotypes with impaired process complexity. We thus show that along with a chronic proinflammatory reaction in the brain, aging causes a significant reduction in the capacity of microglia to scan their environment. This type of pathology is markedly accelerated in mouse models of AD, resulting in a severe microglial process deficiency, and possibly contributing to enhanced cognitive decline.  相似文献   

8.
    
Advances in the understanding of AD pathogenesis have recently provided strong support for a modified Aβ protein cascade hypothesis, stating that several different Aβ assemblies contribute to the triggering of a complex pathological cascade leading to neurodegeneration. Both in vitro and in vivo, Aβ rapidly forms fibrils (fAβ), which are able to interact with various molecular partners, including proteins, lipids and proteoglycans. In a previous study aimed to identify some of these molecular partners of fAβ, we demonstrated that the GAPDH was specifically coprecipitated with fAβ. The aim of this study was to characterize this interaction. First, it was shown by TEM that synthetic GAPDH directly binds fAβ 1–42. Then rat synaptosomal proteins were purified and incubated with different forms of Aβ in various conditions, and the presence of GAPDH among the proteins coprecipitated with Aβ was studied by western blotting. Results showed that the interaction between GAPDH and fAβ 1–42 is nonionic, as is not impaired by increasing salt concentrations. GAPDH is coprecipitated not only by fAβ, but also by nonfibrillar forms of Aβ 1–42. The 41–42 Aβ sequence seems to be important in the interaction of GAPDH and Aβ, as more GAPDH was coprecipitated with fAβ 1–42 than with fAβ 1–40. GAPDH extracted from various subcellular fractions including mitochondria, was shown to interact with fAβ. Our data demonstrate a direct interaction between Aβ and GAPDH and support the possibility that this interaction has an important pathogenic role in AD. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

9.
10.
    
The dissolution process of model insoluble peptide sequences was investigated in view of the electron acceptor (AN) and electron donor (DN) solvent properties. The Alzheimer's disease-inducing (1-42) Abeta-amyloid peptide and its (1-21) fragment, the (66-97) transmembrane bradykinin B2 receptor sequence, and the strongly aggregated VVLGAAIV were selected as models of insoluble peptides. Solvents presenting similar AN and DN values failed, despite their polarities, to dissociate peptide chains (free in solution or bound to a polymer). The maximum solubility of these aggregated sequences was attained in solvents presenting the highest possible (AN-DN) values (in positive or negative mode). The AN-DN values ranged from approximately -20 to +80 and, notably, the lowest dissociation power was ascribed to solvents presenting values of approximately +40. The strong hydrogen bond donor water is located in this region, indicating that, for dissociation of specific insoluble segments, the solvent should appropriately combine its acid/base strength with the potential for van der Waals interactions. We also observed a sequence-dependent pH effect on peptide solubility confirmed through circular dichroism spectroscopy. This approach also revealed a complex but, in many cases, consistent influence of peptide conformation on its solubility degree, even when structure-inducing solvents were added. In conclusion, the random method of selecting solvents to dissolve insoluble and intractable peptide sequences, still in use by some, could be partially supplanted by the strategy described herein, which may be also applicable to other solute dissociation processes.  相似文献   

11.
阿尔茨海默病主要病理学特征是在脑中形成大量的老年斑和神经元纤维缠结以及出现弥漫性脑萎缩.胆碱能系统的失调与阿尔茨海默病的发生机制关系密切.具体表现为基底前脑的胆碱能系统紊乱,胆碱乙酰化酶、乙酰胆碱含量显著减少,以及大量胆碱能神经元退化.胆碱转运体是胆碱能系统中用于转运胆碱进入细胞的关键蛋白体,有三种类型:高亲和力胆碱转运体、胆碱转运体类蛋白及非特异性有机阳离子转运体.近年,很多研究表明胆碱转运体的异常与一系列神经退行性紊乱有关.本文简要综述胆碱能系统中胆碱转运体的生理作用及其在阿尔茨海默病中异常代谢和可能机制的研究进展,以期为防治阿尔茨海默病提供进一步的理论和实验依据.  相似文献   

12.
Alzheimer氏病淀粉样前体蛋白的研究进展   总被引:6,自引:1,他引:5       下载免费PDF全文
Alzheimer氏病(AD)是一种发生于老年人群的原发性退行性脑病,其特征性病变为细胞内神经纤维缠绕(NFT)及细胞外老年斑(SP).构成SP的主要成分β淀粉样多肽(βA)为一由淀粉样前体蛋白(APP)剪切而来的分子质量约为4 ku的多肽,其神经毒性可能由其氧化作用和在脂质双层中形成的Ca2+通道所致.APP的功能目前尚未完全明了,可能具有促进细胞粘附、维护突触膜稳定性等功能.APP主要通过两种途径进行加工修饰:一为分泌途径,由一些假定的分泌酶催化;另一为胞内体-溶酶体途径.在形成SP的βA中,较长者比短者更易聚集,因此一些APP突变由于能够释放出更多的较长的βA或者使较短的βA生成量增加而致发家族性AD.一些可能在APP的代谢中起着重要作用的因素,如早衰蛋白的突变,也可通过增加βA的生成量而致发AD.  相似文献   

13.
    
Human β2‐microglobulin (β2m) forms amyloid fibrils in hemodialysis related amyloidosis. Peptides spanning the β strands of β2m have been shown to form amyloid fibrils in isolation. We have studied the self‐association of a 13‐residue peptide Ac‐DWSFYLLYYTEFT‐am (Pβ2m) spanning one of the β‐strands of human β2‐microglobulin when dissolved in various organic solvents such as methanol (MeOH), trifluoroethanol (TFE), hexafluoroisopropanol (HFIP), and dimethylsulfoxide. We have observed that Pβ2m forms amyloid fibrils when diluted from organic solvents into aqueous buffer at pH 7.0 as judged by increase in thioflavin T fluorescence. Fibril formation was observed to depend on the solvents in which peptide stock solutions were prepared. Circular dichroism spectra indicated propensity for helical conformation in MeOH, TFE, and HFIP. In buffer, β‐structure was observed irrespective of the solvent in which the peptide stock solutions were prepared. Atomic force microscopy images obtained by drying the peptide on mica from organic solvents indicated the ability of Pβ2m to self‐associate to form nonfibrillar structures. Morphology of the structures was dependent on the solvent in which the peptide was dissolved. Peptides that have the ability to self‐associate such as amyloid‐forming peptides would be attractive candidates for the generation of self‐assembled structures with varying morphologies by appropriate choice of surfaces and solvents for dissolution. © 2008 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 85:783‐791, 2008. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

14.
    
The aggregation behavior of peptides Ac‐VQIVYK‐amide (AcPHF6) and Ac‐QIVYK‐amide (AcPHF5) from the amyloidogenic protein tau was examined by atomic force microscopy (AFM) and fluorescence microscopy. Although AcPHF5 did not show enhancement of thioflavin T (ThT) fluorescence in aqueous buffer, distinct aggregates were discernible when peptide was dissolved in organic solvents such as methanol (MeOH), trifluoroethanol (TFE), and hexafluoroisopropanol (HFIP) dried on mica and examined by AFM. Self‐association was evident even though the peptide did not have the propensity to form secondary structures in the organic solvents. In dried films, the peptide adopts predominantly β‐conformation which results in the formation of distinct aggregates. ThT fluorescence spectra and fluorescence images indicate the formation of fibrils when AcPHF6 solutions in organic solvents were diluted into buffer. AcPHF6 had the ability to organize into fibrillar structures when AFM samples were prepared from peptide dissolved in MeOH, TFE, HFIP, and also when diluted into buffer. AcPHF6 showed propensity for β‐structure in aqueous buffer. In MeOH and TFE, AcPHF6 showed helical and β‐structure. Morphology of the fibrils was dependent on peptide conformation in the organic solvents. The structures observed for AcPHF6 are formed rapidly and long incubation periods in the solvents are not necessary. The structures with varying morphologies observed for AcPHF5 and AcPHF6 appear to be mediated by surfaces such as mica and the organic solvents used for dissolution of the peptides. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
    
Microtubule‐associated protein tau becomes abnormally phosphorylated in Alzheimer's disease and other tauopathies and forms aggregates of paired helical filaments (PHF‐tau). AT8 is a PHF‐tau‐specific monoclonal antibody that is a commonly used marker of neuropathology because of its recognition of abnormally phosphorylated tau. Previous reports described the AT8 epitope to include pS202/pT205. Our studies support and extend previous findings by also identifying pS208 as part of the binding epitope. We characterized the phosphoepitope of AT8 through both peptide binding studies and costructures with phosphopeptides. From the cocrystal structure of AT8 Fab with the diphosphorylated (pS202/pT205) peptide, it appeared that an additional phosphorylation at S208 would also be accommodated by AT8. Phosphopeptide binding studies showed that AT8 bound to the triply phosphorylated tau peptide (pS202/pT205/pS208) 30‐fold stronger than to the pS202/pT205 peptide, supporting the role of pS208 in AT8 recognition. We also show that the binding kinetics of the triply phosphorylated peptide pS202/pT205/pS208 was remarkably similar to that of PHF‐tau. The costructure of AT8 Fab with a pS202/pT205/pS208 peptide shows that the interaction interface involves all six CDRs and tau residues 202–209. All three phosphorylation sites are recognized by AT8, with pT205 acting as the anchor. Crystallization of the Fab/peptide complex under acidic conditions shows that CDR‐L2 is prone to unfolding and precludes peptide binding, and may suggest a general instability in the antibody. Proteins 2016; 84:427–434. © 2016 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.  相似文献   

16.
    
Peptide vaccines and immunotherapies against aggregating proteins involved in the pathogenesis and progression of Alzheimer's disease (AD)—the β-amyloid peptide (Aβ) and tau—are promising therapeutic avenues against AD. Two decades of effort has led to the controversial United States Food and Drug Administration (FDA) approval of the monoclonal antibody Aducanumab (Aduhelm), which has subsequentially sparked the revival and expedited review of promising monoclonal antibody immunotherapies that target Aβ. In this review, we explore the development of Aβ and tau peptide vaccines and immunotherapies with monoclonal antibodies in clinical trials against AD.  相似文献   

17.

Background

Alzheimer's disease (AD) is a progressive neurodegenerative disorder. There is a consensus that Aβ is a pathologic agent and that its toxic effects, which are at present incompletely understood, may occur through several potential mechanisms. Polyphenols are known to have wide-ranging properties with regard to health and for helping to prevent various diseases like neurodegenerative disorders. Thus inhibiting the formation of toxic Aβ assemblies is a reasonable hypothesis to prevent and perhaps treat AD

Methods

Solution NMR and molecular modeling were used to obtain more information about the interaction between the Aβ1–40 and the polyphenol ε-viniferin glucoside (EVG) and particularly the Aβ residues involved in the complex.

Results

The study demonstrates the formation of a complex between two EVG molecules and Aβ1–40 in peptide characteristic regions that could be in agreement with the inhibition of aggregation. Indeed, in previous studies, we reported that EVG strongly inhibited in vitro the fibril formation of the full length peptides Aβ1–40 and Aβ1–42, and had a strong protective effect against PC12 cell death induced by these peptides.

Conclusion

For the full length peptide Aβ1–40, the binding sites observed could explain the EVG inhibitory effect on fibrillization and thus prevent amyloidogenic neurotoxicity.

General significance

Even though this interaction might be important at the biological level to explain the protective effect of polyphenols in neurodegenerative diseases, caution is required when extrapolating this in vitro model to human physiology.  相似文献   

18.
19.
To develop potent multi-target ligands against Alzheimer's disease (AD), a series of novel bivalent β-carboline derivatives were designed, synthesized, and evaluated. In vitro studies revealed these compounds exhibited good multifunctional activities. In particular, compounds 8f and 8g showed the good selectivity potency on BuChE inhibition (IC50?=?1.7 and 2.7?μM, respectively), Aβ1-42 disaggregation and neuroprotection. Compared with the positive control resveratrol, 8f and 8g showed better activity in inhibiting Aβ1-42 aggregation, with inhibitory rate 82.7% and 85.7% at 25?μM, respectively. Moreover, compounds 8e, 8f and 8g displayed excellent neuroprotective activity by ameliorating the impairment induced by H2O2, okadaic acid (OA) and Aβ1-42 without cytotoxicity in SH-SY5Y cells. Thus, the present study evidently showed that compounds 8f and 8g are potent multi-functional agents against AD and might serve as promising lead candidates for further development.  相似文献   

20.
    
Despite the existing knowledge regarding the neuropathology of Alzheimer's disease (AD), the cause of sporadic forms of the disease is unknown. It has been suggested that systemic inflammation may have a role, but the exact mechanisms through which inflammatory processes influence the pathogenesis and progress of AD are not obvious. Allergy is a chronic inflammatory disease affecting more than 20% of the Western population, but the effects of allergic conditions on brain functions are largely unknown. The aim of this study was to investigate whether or not chronic peripheral inflammation associated with allergy affects the expression of AD-related proteins and inflammatory markers in the brain. On the basis of previously described models for allergy in mice we developed a model of chronic airway allergy in mouse, with ovalbumin as allergen. The validity of the chronic allergy model was confirmed by a consistent and reproducible eosinophilia in the bronchoalveolar lavage (BAL) fluid of allergic animals. Allergic mice were shown to have increased brain levels of both immunoglobulin (Ig) G and IgE with a widespread distribution. Allergy was also found to increase phosphorylation of tau protein in the brain. The present data support the notion that allergy-dependent chronic peripheral inflammation modifies the brain inflammatory status, and influences phosphorylation of an AD-related protein, indicating that allergy may be yet another factor to be considered for the development and/or progression of neurodegenerative diseases such as AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号