首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two enzymes thought to be involved in the biosynthesis of chlorogenic acid have been separated and purified by ion exchange chromatography and their properties studied. These two enzymes, p-coumarate CoA ligase and hydroxycinnamyl CoA: quinate hydroxycinnamyl transferase, acting together catalyse the conversion of p-coumaric acid to 5′-p-coumarylquinic acid and of caffeic acid to chlorogenic acid. The ligase has a higher affinity for p-coumaric than for caffeic acid and will in addition activate a number of other cinnamic acids such as ferulic, isoferulic and m-coumaric acids but not cinnamic acid. The transferase shows higher activity and affinity with p-coumaryl CoA than caffeyl CoA. It also acts with ferulyl CoA but only very slowly. The enzyme shows high specificity for quinic acid; shikimic acid is esterified at only 2% of the rate with quinic acid and glucose is not a substrate. The transferase activity is reversible and both chlorogenic acid and 5′-p-coumarylquinic acids are cleaved in the presence of CoA to form quinic acid and the corresponding hydroxycinnamyl CoA thioester.  相似文献   

2.
An enzyme fraction from aged swede root disks catalyses the formation of CoA thioesters of cinnamic acids in the presence of CoA, ATP and Mg2+. The enzyme shows activity only to those cinnamic acid derivatives bearing a phenolic OH group, p-coumaric and ferulic acids being the most active substrates. The requirement for Mg2+ can be replaced by Mn2+, Co2+ or Ni2+. The requirement for ATP could not be replaced by GTP, CTP, UTP, ADP or AMP. ADP and AMP, but not pyrophosphate, inhibited the ATP dependent activation of p-coumarate. The activity was inhibited by N-ethylmaleimide and p-chloro-mercuribenzoate which suggests a requirement for -SH groups for activation. The activity of the enzyme is low in freshly prepared disks but rises during ageing, particularly if the ageing is carried out in the presence of low concentrations of ethylene.  相似文献   

3.
Hydroxycinnamate: CoA ligase was partially purified from the basidiomycete, Polyporus hispidus. The enzyme required ATP and CoA. Reduced activity was obtained with GTP. The same preparations catalyzed acetyl CoA formation. Light-grown cultures yielded preparations with an increased activity for hydroxycinnamic acids but not for acetate.  相似文献   

4.
Treatment of an isoenzyme of potato apyrase of high adenosine triphosphatase/adenosine diphosphatase (ATPase/ADPase) ratio with iodine, N-acetylimidazole or tetranitromethane inactivates the ATPase activity of this enzyme faster than its ADPase activity. There was protection by substrates with the two last-named substances. This and the appearance of nitrotyrosine suggests the participation of tyrosyl residues in both enzymic activities of potato apyrase. The participation of thiol groups is excluded by the insensitivity of apyrase to p-chloromercuribenzoate. Also, 2-hydroxy-5-nitrobenzyl bromide or carboxymethylation produce the same rate of inactivation of ATPase and ADPase activities. Substrates protect both activities from inactivation. Hydrogen peroxide and photo-oxidation inactivate ATPase activity faster than ADPase activity. There is no protection by substrates. Analysis of pH effects on Vmax. and Km suggest different pK values for the amino acid residues at the ATP and ADP sites.  相似文献   

5.
p-Hydroxycinnamate:CoA ligases were extracted from the xylems of angiosperms and gymnosperms, and the substrate specificities toward ferulate and sinapate were examined. Most of angiosperm and gymnosperm CoA ligases examined were active with ferulate but not with sinapate; however, the enzymes of Erythrina crista-galli, Robinia pseudoacacia and bamboo showed considerable activity with sinapate. The other enzymes, although inactive with sinapate, showed no inhibitory effect on the Erythrina CoA ligase reaction with sinapate. The Kms for sinapate and ferulate of the Erythrina enzyme were 1.0 and 2.1 μM, respectively, and p-hydroxycinnamate was the best substrate among cinnamates examined. The MW of the CoA ligase was 40 000 and the pH optimum was between 7.2 and 7.6. The possible roles of p-hydroxycinnamate:CoA ligase in lignin biosynthesis are discussed.  相似文献   

6.
A survey of a range of plant tissues showed that the hydroxycinnamate CoA ligase in crude extracts of pea shoots had a high relative activity towards sinapic and other methoxycinnamic acids, together with high activity with p-coumaric acid. The pea enzyme has been resolved by chromatography on DEAE-cellulose into two peaks which differ in their substrate specificity. The form which elutes at relatively low salt concentrations has a ratio activity towards p-coumaric and sinapic acids of about 1.8:1 while the form eluting at higher salt concentrations, although showing very high activity with p-coumaric acid, is inactive towards sinapic acid. The pattern of elution of these forms following gel filtration on Ultragel AcA 34 and Sephadex G100 suggests that these two isoenzymes which differ in ionic properties and substrate specificity can exist in two or three molecular weight forms and there is evidence that these forms are under certain circumstances interconvertible.  相似文献   

7.
A. Feutry  R. Letouze 《Phytochemistry》1984,23(8):1557-1559
Hydroxycinnamate: CoA ligase was extracted from stems of in vitro willow cultures and characterized. One peak of activity was obtained after column chromatography on Sephadex G 100 or DEAE Sephacel. p-Coumaric acid gave the highest Vmax among the cinnamates examined. The Kmvalues for p-coumaric, caffeic and ferulic acid were 31.0, 4.7 and 46 μM, respectively. The MW of the CoA ligase was 57 000 and the pH optimum was 7.0. The characteristics of the enzyme correspond to its physiological role in lignin biosynthesis.  相似文献   

8.
Determination of acid hydrolases in human platelets   总被引:3,自引:0,他引:3  
A method is described which allows the preparation of pure cinnamoyl-CoA thiolesters in high yields. This procedure utilizes a partially purified cinnamoyl-CoA ligase obtained from a strain of Pseudomonas putida and some properties of this new enzyme are described. Product isolation involves polyamide column chromatography which allows the purification of 50-mg batches of thiolesters. The method is applicable to a range of cinnamic acids, and is particularly suitable in preparing the biologically important CoA esters of p-coumarate, ferulate, and caffeate.  相似文献   

9.
4-Coumarate:CoA ligase (EC 6.2.1.12) was isolated from 8-day-old cell suspension cultures of parsley (Petroselinum hortense Hoffm.) which had been irradiated with ultraviolet light for 15 h. The enzyme was partially purified by fractionation with MnCl2 and (NH4)2SO4 and by column chromatography on diethylaminoethyl cellulose, hydroxyapatite, and aminohexyl-Sepharose. A 90-fold increase in specific activity with an overall yield of 20% was achieved. Analytical gel electrophoresis indicated the occurrence of only one 4-coumarate:CoA ligase species in the final enzyme preparation. The enzyme was largely specific for 4-coumarate and other derivatives of cinnamic acid. 4-Coumarate had the lowest apparent Km and the highest VKm values (1.4 × 10?5, m and 14.7 × 105 pkatal × m?1, respectively) of all substrates tested. Only the trans isomer of 4-coumarate was activated. The two cosubstrates, ATP and CoA, exhibited sigmoidal saturation kinetics, which were interpreted as indicating homotropic, allo-steric effects. A molecular weight of about 67,000 was estimated for 4-coumarate:CoA ligase. The substrate specificity of the enzyme was in agreement with its proposed function in flavonoid biosynthesis.  相似文献   

10.
The functions of two long-chain fatty acid CoA ligase genes (facl) in crude oil-degrading Geobacillus thermodenitrificans NG80-2 were characterized. Facl1 and Facl2 encoded by GTNG_0892 and GTNG_1447 were expressed in Escherichia coli and purified as His-tagged fusion proteins. Both enzymes utilized a broad range of fatty acids ranging from acetic acid (C2) to melissic acid (C30). The most preferred substrates were capric acid (C10) for Facl1 and palmitic acid (C16) for Facl2, respectively. Both enzymes had an optimal temperature of 60 °C, an optimal pH of 7.5, and required ATP as a cofactor. Thermostability of the enzymes and effects of metal ions, EDTA, SDS and Triton X-100 on the enzyme activity were also investigated. When NG80-2 was cultured with crude oil rather than sucrose as the sole carbon source, upregulation of facl1 and facl2 mRNA was observed by real time RT-PCR. This is the first time that the activity of fatty acid CoA ligases toward long-chain fatty acids up to at least C30 has been demonstrated in bacteria.  相似文献   

11.
The accumulation of the isoflavonoid phytoalexin, glyceollin, occurs in hypocotyls of green soybean seedlings (Glycine max L. Merr. cv Harosoy 63) in response to the injection of a glucan elicitor isolated from the mycelial walls of the fungus, Phytophthora megasperma f. sp. glycinea. This accumulation, which levels off after 24 hours, is preceded by a dramatic, transient rise in extractable activities of two early enzymes in the biosynthetic pathway, phenylalanine ammonia-lyase (PAL) and p-coumaryl CoA ligase (pCL). The maximum amount of extractable activity occurs 12 to 16 hours after elicitor treatment and is coincident with the most rapid period of glyceollin accumulation. These results suggest a regulatory role for these early enzymes in the biosynthesis of this secondary metabolite. High performance liquid chromatography analysis of the early intermediates in the pathway further corroborates this hypothesis. The relative pool size and rate of turnover of p-coumaric acid, an early intermediate in glyceollin production, increase during the period of rapid increases in enzyme activities. Removal of cotyledons from elicitor-treated seedlings reduces glyceollin accumulation approximately 70%. This limitation of phytoalexin accumulation by cotyledon removal is correlated with a similar cotyledon effect on reduction of extractable activities of both PAL and pCL as well as a decrease in the flux of carbon through the p-coumaric acid pool. This research further supports the hypothesis that early enzymic steps in a biosynthetic pathway diverting carbon from primary to secondary metabolites function as regulatory control points.  相似文献   

12.
3-Hydroxybenzoate:coenzyme A ligase, an enzyme involved in xanthone biosynthesis, was detected in cell-free extracts from cultured cells of Centaurium erythraea Rafn. The enzyme was separated from 4-coumarate:coenzyme A ligase by fractionated ammonium sulphate precipitation and hydrophobic interaction chromatography. The CoA ligases exhibited different substrate specificities. 3-Hydroxybenzoate:coenzyme A ligase activated 3-hydroxybenzoic acid most efficiently and lacked affinity for cinnamic acids. In contrast, 4-coumarate:CoA ligase mainly catalyzed the activation of 4-coumaric acid but did not act on benzoic acids. The two enzymes were similar with respect to their relative molecular weight, their pH and temperature optima, their specific activity and the changes in their activity during cell culture growth. Received: 23 September 1996 / Accepted: 28 November 1996  相似文献   

13.
14.
Entamoeba histolytica, an amitochondriate protozoan parasite that relies on glycolysis as a key pathway for ATP generation, has developed a unique extended PPi-dependent glycolytic pathway in which ADP-forming acetyl-coenzyme A (CoA) synthetase (ACD; acetate:CoA ligase [ADP-forming]; EC 6.2.1.13) converts acetyl-CoA to acetate to produce additional ATP and recycle CoA. We characterized the recombinant E. histolytica ACD and found that the enzyme is bidirectional, allowing it to potentially play a role in ATP production or in utilization of acetate. In the acetate-forming direction, acetyl-CoA was the preferred substrate and propionyl-CoA was used with lower efficiency. In the acetyl-CoA-forming direction, acetate was the preferred substrate, with a lower efficiency observed with propionate. The enzyme can utilize both ADP/ATP and GDP/GTP in the respective directions of the reaction. ATP and PPi were found to inhibit the acetate-forming direction of the reaction, with 50% inhibitory concentrations of 0.81 ± 0.17 mM (mean ± standard deviation) and 0.75 ± 0.20 mM, respectively, which are both in the range of their physiological concentrations. ATP and PPi displayed mixed inhibition versus each of the three substrates, acetyl-CoA, ADP, and phosphate. This is the first example of regulation of ACD enzymatic activity, and possible roles for this regulation are discussed.  相似文献   

15.
Investigations on the cholic acid CoA ligase activity of rat liver microsomes were made possible by the development of a rapid, sensitive radiochemical assay based on the conversion of [3H]choloyl-CoA. More than 70% of the rat liver cholic acid CoA ligase activity was associated with the microsomal subcellular fraction. The dependencies of cholic acid CoA ligase activity on pH, ATP, CoA, Triton WR-1339, acetone, ethanol, magnesium, and salts were investigated. The hypothesis that the long chain fatty acid CoA ligase activity and the cholic acid CoA ligase activity are catalyzed by a single microsomal enzyme was investigated. The ATP, CoA, and cholic (palmitic) acid kinetics neither supported nor negated the hypothesis. Cholic acid was not an inhibitor of the fatty acid CoA ligase and palmitic acid was not a competitive inhibitor of the cholic acid CoA ligase. The cholic acid CoA ligase activity utilized dATP as a substrate more effectively than did the fatty acid CoA ligase activity. The cholic acid and fatty acid CoA ligase activities appeared to have different pH dependencies, differed in thermolability at 41 degrees, and were differentially inactivated by phospholipase C. Moreover, fatty acid CoA ligase activity was present in microsomal fractions from all rat organs tested while cholic acid CoA ligase activity was detected only in liver microsomes. The data suggest that separate microsomal enzymes are responsible for the cholic acid and the fatty acid CoA ligase activities in liver.  相似文献   

16.
ATP is a ligand of P2X family purinoceptors, and exogenous ATP administration evokes pain behaviors. To date, there is a lack of systematic studies to address relationships between endogenous ATP and neuropathic pain. In this report, we took advantage of a mouse model of resiniferatoxin (RTX)-induced neuropathic pain to address the role of endogenous ATP in neuropathic pain. After RTX administration, endogenous ATP markedly increased in dorsal root ganglia (DRGs) (p?<?0.01) and skin tissues (p?<?0.001). The excessive endogenous ATP was removed by apyrase, an ATP hydrolyzing enzyme, administration via either a lumbar puncture route (p?<?0.001) or an intraplantar injection (p?<?0.001), which led to the normalization of neuropathic pain. In addition, intraplantar treatment with apyrase caused mechanical analgesia. Linear analyses showed that the densities of P2X3(+) neurons (r?=??0.72, p?<?0.0001) and P2X3(+) dermal nerves (r?=??0.72, p?<?0.0001) were inversely correlated with mechanical thresholds. Moreover, the contents of endogenous ATP in skin tissues were linearly correlated with P2X3(+) dermal nerves (r?=?0.80, p?<?0.0001) and mechanical thresholds (r?=??0.80, p?<?0.0001). In summary, this study demonstrated that enhanced purinergic signalling due to an increase in endogenous ATP after RTX-induced nerve injury contributed to the development of neuropathic pain. The data in this report provide a new therapeutic strategy for pain control by targeting the endogenous ligand of purinergic signalling.  相似文献   

17.
Salivary gland homogenates of adult female anopheline mosquitoes, of three different species, hydrolysed ATP and ADP, thereby demonstrating an apyrase activity. Total enzyme activity was greatest in the vector species A. freeborni (20.7 ± 2.4 mU/pair of glands) and least in the autogenous mosquito A. sp. nr. salbaii (3.0 ± 0.4 mU/pair of glands); another vector species, A. stephensi, produced intermediate levels of the enzyme (7.8 ± 0.7 mU/pair of glands). In all cases, the reaction was activated by divalent cations and maximal at pH 9.0 and in the presence of 2-mercaptoethanol. Apyrase activity in each salivary gland correlated with the degree of inhibition of ADP-induced platelet aggregation in vitro. Duration of probing correlated inversely with salivary apyrase content. We conclude that salivary apyrase largely determines a mosquito's ability to locate blood. Differential selective pressures for facility of blood location would have influenced the level of salivary apyrase in these mosquitoes.  相似文献   

18.
Abstract— —Selectivity in the esterification of fatty acids to lysolecithin by rat-brain enzymes in vitro was investigated using free fatty acids (activation plus esterification) and CoA esters (esterification) of two naturally-occurring monoenoic fatty-acid isomers, oleic acid [18:1 (n - 9)] and cis-vaccenic acid [18:1 (n - 7)]. Esterification of free acids to l-acyl-sn-glycero-3-phosphorylcholine (1-acyl GPC) was dependent on CoA and ATP, and was stimulated by MgCl2 and NaF. Under comparable conditions, fatty-acid activation (acyl-CoA synthetase [acid: CoA ligase (AMP)] EC 6.2.1.3.) appeared to be rate-limiting to 1-acyl GPC acyltransferase (acyl-CoA:l-acylglycero-3-phosphocholine O-acyltrans-ferase, EC 2.3.1.23.), since rates were always less with free fatty acids than with the CoA esters. A comparison of substrate curves obtained with free fatty acids and CoA esters suggests a preference for oleic acid during activation. Acyltransferase activity with 2-acyl GPC was similar with both acyl-CoA isomers, whereas with 1-acyl GPC, activity with oleoyl-CoA consistently exceeded that with cis-vaccenoyl-CoA. This difference between patterns of selectivity in esterification of positions 1 and 2 of lecithin suggests that separate enzymes catalyze the two reactions. The transfer of the isomers to the 2 position was affected in a similar manner by changes in pH and temperature, as well as in protein, fatty acid (or acyl-CoA), and 1-acyl GPC concentrations. Patterns of incorporation with simultaneous incubation of both isomers suggests one enzyme. Differences in acyltransferase activity with the two isomerie acyl-CoA's were observed in subcellular distribution, activity changes with brain maturation, and loss of activity on preincubation of microsomes at 45C. From these results it is not certain whether oleic and cis-vaccenic acids are esterified to the 2 position by separate enzymes, or by one enzyme with different affinities for the isomers. However, the investigation clearly indicates that acyltransferases, and possibly acyl-CoA synthetases in brain possess selectivity related to subtle differences in double-bond position. These selectivities probably are important in determining the specific fatty-acid composition of the complex lipids of brain.  相似文献   

19.
The ATPase of avian myeloblastosis virus (AMV) is not a recognizable cellular enzyme. It hydrolyzes ATP, GTP, ITP, UTP, and dCTP at equal rates, is inhibited by high concentrations of dithiothreitol, and is partially inhibited by 1 × 10?5mp-chloromercuribenzoic acid (PCMB) and p-chloromercuribenzene sulfonate acid (PCMBS). The inhibition by the mercurials is reversed by increasing the concentration of PCMB or PCMBS to 1 × 10?3m. The enzyme requires phospholipid for activity. Incubation with phospholipase C inhibits activity and subsequent addition of lecithin-containing saturated fatty acids partially restores activity, whereas lecithin-containing unsaturated fatty acids further inhibit activity.  相似文献   

20.
A new enzyme, phenylacetyl-CoA ligase (AMP-forming) (PA-CoA ligase, EC 6.2.1-) involved in the catabolism of phenylacetic acid (PAA) in Pseudomonas putida is described and characterized. PA-CoA ligase was specifically induced by PAA when P. putida was grown in a chemically defined medium in which phenylacetic acid was the sole carbon source. Hydroxyl, methyl-phenylacetyl derivatives, and other PAA close structural molecules did not induce the synthesis of this enzyme and neither did acetic, butyric, succinic, nor fatty acids (greater than C5 atoms carbon length). PA-CoA ligase requires ATP, CoA, PAA, and MgCl2 for its activity. The maximal rate of catalysis was achieved in 50 mM HCl/Tris buffer, pH 8.2, at 30 degrees C and under these conditions, the Km calculated for ATP, CoA, and PAA were 9.7, 1.0, and 16.5 mM, respectively. The enzyme is inhibited by some divalent cations (Cu2+, Zn2+, and Hg2+) and by the sulfhydryl reagents N-ethylmaleimide, 5,5'-dithiobis(2-nitrobenzoic acid), and p-chloromercuribenzoate. PA-CoA ligase was purified to homogeneity (513-fold). It runs as a single polypeptide in 12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis and has a molecular mass of 48 +/- 1 kDa. PA-CoA ligase does not use as substrate either 3-hydroxyphenylacetic, 4-hydroxyphenylacetic, or 3,4-dihydroxyphenylacetic acids and shows a substrate specificity different from other acyl-CoA-activating enzymes. The enzyme is detected in P. putida from the early logarithmic phase of growth and is repressed by glucose, suggesting that PA-CoA ligase is a specific enzyme involved in the utilization of PAA as energy source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号