首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Structure‐based drug design tries to mutually map pharmacological space populated by putative target proteins onto chemical space comprising possible small molecule drug candidates. Both spaces are connected where proteins and ligands recognize each other: in the binding pockets. Therefore, it is highly relevant to study the properties of the space composed by all possible binding cavities. In the present contribution, a global mapping of protein cavity space is presented by extracting consensus cavities from individual members of protein families and clustering them in terms of their shape and exposed physicochemical properties. Discovered similarities indicate common binding epitopes in binding pockets independent of any possibly given similarity in sequence and fold space. Unexpected links between remote targets indicate possible cross‐reactivity of ligands and suggest putative side effects. The global clustering of cavity space is compared to a similar clustering of sequence and fold space and compared to chemical ligand space spanned by the chemical properties of small molecules found in binding pockets of crystalline complexes. The overall similarity architecture of sequence, fold, and cavity space differs significantly. Similarities in cavity space can be mapped best to similarities in ligand binding space indicating possible cross‐reactivities. Most cross‐reactivities affect co‐factor and other endogenous ligand binding sites. Proteins 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

2.
3.
4.
Cao Y  Li H 《Biophysical journal》2011,101(8):2009-2017
Many proteins in living cells require cofactors to carry out their biological functions. To reach their functional states, these proteins need to fold into their unique three-dimensional structures in the presence of their cofactors. Two processes, folding of the protein and binding of cofactors, intermingle with each other, making the direct elucidation of the folding mechanism of proteins in the presence of cofactors challenging. Here we use single-molecule atomic force microscopy to directly monitor the folding and cofactor binding dynamics of an engineered metal-binding protein G6-53 at the single-molecule level. Using the mechanical stability of different conformers of G6-53 as sensitive probes, we directly identified different G6-53 conformers (unfolded, apo- and Ni2+-bound) populated along the folding pathway of G6-53 in the presence of its cofactor Ni2+. By carrying out single-molecule atomic force microscopy refolding experiments, we monitored kinetic evolution processes of these different conformers. Our results suggested that the majority of G6-53 folds through a binding-after-folding mechanism, whereas a small fraction follows a binding-before-folding pathway. Our study opens an avenue to utilizing force spectroscopy techniques to probe the folding dynamics of proteins in the presence of cofactors at the single-molecule level, and we anticipated that this method can be used to study a wide variety of proteins requiring cofactors for their function.  相似文献   

5.
6.
The folding pathway, three-dimensional structure and intrinsic dynamics of proteins are governed by their amino acid sequences. Internal protein surfaces with physicochemical properties appropriate to modulate conformational fluctuations could play important roles in folding and dynamics. We show here that proteins contain buried interfaces of high polarity and low packing density, coined as LIPs: Light Interfaces of high Polarity, whose physicochemical properties make them unstable. The structures of well-characterized equilibrium and kinetic folding intermediates indicate that the LIPs of the corresponding native proteins fold late and are involved in local unfolding events. Importantly, LIPs can be identified using very fast and uncomplicated computational analysis of protein three-dimensional structures, which provides an easy way to delineate the protein segments involved in dynamics. Since LIPs can be retained while the sequences of the interacting segments diverge significantly, proteins could in principle evolve new functional features reusing pre-existing encoded dynamics. Large-scale identification of LIPS may contribute to understanding evolutionary constraints of proteins and the way protein intrinsic dynamics are encoded.  相似文献   

7.
8.
Alternate frame folding (AFF) is a mechanism by which conformational change can be engineered into a protein. The protein structure switches from the wild‐type fold (N) to a circularly‐permuted fold (N′), or vice versa, in response to a signaling event such as ligand binding. Despite the fact that the two native states have similar structures, their interconversion involves folding and unfolding of large parts of the molecule. This rearrangement is reported by fluorescent groups whose relative proximities change as a result of the order–disorder transition. The nature of the conformational change is expected to be similar from protein to protein; thus, it may be possible to employ AFF as a general method to create optical biosensors. Toward that goal, we test basic aspects of the AFF mechanism using the AFF variant of calbindin D9k. A simple three‐state model for fold switching holds that N and N′ interconvert through the unfolded state. This model predicts that the fundamental properties of the switch—calcium binding affinity, signal response (i.e., fluorescence change upon binding), and switching rate—can be controlled by altering the relative stabilities of N and N′. We find that selectively destabilizing N or N′ changes the equilibrium properties of the switch (binding affinity and signal response) in accordance with the model. However, kinetic data indicate that the switching pathway does not require whole‐molecule unfolding. The rate is instead limited by unfolding of a portion of the protein, possibly in concert with folding of a corresponding region. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
The gene 5 protein (g5p) encoded by the Ff strains of Escherichia coli bacteriophages is a dimeric single‐stranded DNA‐binding protein (SSB) that consists of two identical OB‐fold (oligonucleotide/oligosaccharide‐binding) motifs. Ultrafast time‐resolved fluorescence measurements were carried out to investigate the effect of g5p binding on the conformation of 2‐aminopurine (2AP) labels positioned between adenines or cytosines in the 16‐nucleotide antiparallel tails of DNA hairpins. The measurements revealed significant changes in the conformational heterogeneity of the 2AP labels caused by g5p binding. The extent of the changes was dependent on sub‐binding‐site location, but generally resulted in base unstacking. When bound by g5p, the unstacked 2AP population increased from ~22% to 59–67% in C‐2AP‐C segments and from 39% to 77% in an A‐2AP‐A segment. The OB‐fold RPA70A domain of the human replication protein A also caused a significant amount of base unstacking at various locations within the DNA binding site as evidenced by steady‐state fluorescence titration measurements using 2AP‐labeled 5‐mer DNAs. These solution studies support the concept that base unstacking at most of a protein's multiple sub‐binding‐site loci may be a feature that allows non‐sequence specific OB‐fold proteins to bind to single‐stranded DNAs (ssDNAs) with minimal preference for particular sequences. © 2013 Wiley Periodicals, Inc. Biopolymers 99: 484–496, 2013.  相似文献   

10.
Ellen V. Hackl 《Biopolymers》2014,101(6):591-602
Natively unfolded (intrinsically disordered (ID) proteins) have been attracting an increasing attention due to their involvement in many regulatory processes. Natively unfolded proteins can fold upon binding to their metabolic partners. Coupled folding and binding events usually involve only relatively short motifs (binding motifs). These binding motifs which are able to fold should have an increased propensity to form a secondary structure. The aim of the present work was to probe the conformation of the intrinsically disordered protein 4E‐BP1 in the native and partly folded states by limited proteolysis and to reveal regions with a high propensity to form an ordered structure. Trifuoroethanol (TFE) in low concentrations (up to 15 vol%) was applied to increase the helical population of protein regions with a high intrinsic propensity to fold. When forming helical structures, these regions lose mobility and become more protected from proteases than random/unfolded protein regions. Limited proteolysis followed by mass spectrometry analysis allows identification of the regions with decreased mobility in TFE solutions. Trypsin and V8 proteases were used to perform limited proteolysis of the 4E‐BP1 protein in buffer and in solutions with low TFE concentrations at 37°C and at elevated temperatures (42 and 50°C). Comparison of the results obtained with the previously established 4E‐BP1 structure and the binding motif illustrates the ability of limited proteolysis in the presence of a folding assistant (TFE) to map the regions with high and low propensities to form a secondary structure revealing potential binding motifs inside the intrinsically disordered protein. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 591–602, 2014.  相似文献   

11.
Both Proteins and DNA undergo conformational changes in order to form functional complexes and also to facilitate interactions with other molecules. These changes have direct implications for the stability and specificity of the complex, as well as the cooperativity of interactions between multiple entities. In this work, we have extensively analyzed conformational changes in DNA‐binding proteins by superimposing DNA‐bound and unbound pairs of protein structures in a curated database of 90 proteins. We manually examined each of these pairs, unified the authors' annotations, and summarized our observations by classifying conformational changes into six structural categories. We explored a relationship between conformational changes and functional classes, binding motifs, target specificity, biophysical features of unbound proteins, and stability of the complex. In addition, we have also investigated the degree to which the intrinsic flexibility can explain conformational changes in a subset of 52 proteins with high quality coordinate data. Our results indicate that conformational changes in DNA‐binding proteins contribute significantly to both the stability of the complex and the specificity of targets recognized by them. We also conclude that most conformational changes occur in proteins interacting with specific DNA targets, even though unbound protein structures may have sufficient information to interact with DNA in a nonspecific manner. Proteins 2014; 82:841–857. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
Proteins possessing the same fold may undergo similar motions, particularly if these motions involve large conformational transitions. The increasing amounts of structural data provide a useful starting point with which to test this hypothesis. We have performed a total of 0.29 micros of molecular dynamics across a series of proteins within the same fold family (periplasmic binding proteinlike) in order to address to what extent similarity of motion exists. Analysis of the local conformational space on these timescales (10-20 ns) revealed that the behavior of the proteins could be readily distinguished between an apo-state and a ligand-bound state. Moreover, analysis of the root-mean-square fluctuations reveals that the presence of the ligand exerts a stabilizing effect on the protein, with similar motions occurring, but with reduced magnitude. Furthermore, the conformational space in the presence of the ligand appears to be dictated by sequence but not by the type of ligand present. In contrast, apo-simulations showed considerable overlap of conformational space across the fold as a result of their ability to undergo larger fluctuations. Indeed, we observed several transitions from different simulations between states corresponding to the closed-cleft and open-cleft forms of the fold, with the predominant motions being conserved across the different proteins. Thus, large-scale conformational changes do indeed appear to be conserved across this fold architecture, but smaller conformational motions appear to reflect the differences in sequence and local fold.  相似文献   

13.
14.
Determining the energetics of the unfolded state of a protein is essential for understanding the folding mechanics of ordered proteins and the structure–function relation of intrinsically disordered proteins. Here, we adopt a coil‐globule transition theory to develop a general scheme to extract interaction and free energy information from single‐molecule fluorescence resonance energy transfer spectroscopy. By combining protein stability data, we have determined the free energy difference between the native state and the maximally collapsed denatured state in a number of systems, providing insight on the specific/nonspecific interactions in protein folding. Both the transfer and binding models of the denaturant effects are demonstrated to account for the revealed linear dependence of inter‐residue interactions on the denaturant concentration, and are thus compatible under the coil‐globule transition theory to further determine the dimension and free energy of the conformational ensemble of the unfolded state. The scaling behaviors and the effective θ‐state are also discussed.  相似文献   

15.
16.
Cofactors are essential components of many proteins for biological activity. Characterization of several cofactor-binding proteins has shown that cofactors often have the ability to interact specifically with the unfolded polypeptides. This suggests that cofactor-coordination prior to polypeptide folding may be a relevant path in vivo. By binding before folding, the cofactor may affect both the mechanism and speed of folding. Here, we discuss three different cofactors that modulate protein-folding processes in vitro.  相似文献   

17.
S. Rackovsky 《Proteins》2015,83(11):1923-1928
We examine the utility of informatic‐based methods in computational protein biophysics. To do so, we use newly developed metric functions to define completely independent sequence and structure spaces for a large database of proteins. By investigating the relationship between these spaces, we demonstrate quantitatively the limits of knowledge‐based correlation between the sequences and structures of proteins. It is shown that there are well‐defined, nonlinear regions of protein space in which dissimilar structures map onto similar sequences (the conformational switch), and dissimilar sequences map onto similar structures (remote homology). These nonlinearities are shown to be quite common—almost half the proteins in our database fall into one or the other of these two regions. They are not anomalies, but rather intrinsic properties of structural encoding in amino acid sequences. It follows that extreme care must be exercised in using bioinformatic data as a basis for computational structure prediction. The implications of these results for protein evolution are examined. Proteins 2015; 83:1923–1928. © 2015 Wiley Periodicals, Inc.  相似文献   

18.
19.
It is well known that the functions of metalloproteins generally originate from their metal‐binding motifs. However, the intrinsic nature of individual motifs remains unknown, particularly the details about metal‐binding effects on the folding of motifs; the converse is also unknown, although there is no doubt that the motif is the core of the reactivity for each metalloprotein. In this study, we focused our attention on the zinc‐binding motif of the metzincin clan family, HEXXHXXGXXH; this family contains the general zinc‐binding sequence His–Glu–Xaa–Xaa–His (HEXXH) and the extended GXXH region. We adopted the motif sequence of stromelysin‐1 and investigated the folding properties of the Trp‐labeled peptides WAHEIAHSLGLFHA (STR‐W1), AWHEIAHSLGLFHA (STR‐W2), AHEIAHSLGWFHA (STR‐W11), and AHEIAHSLGLFHWA (STR‐W14) in the presence and absence of zinc ions in hydrophobic micellar environments by circular dichroism (CD) measurements. We accessed successful incorporation of these zinc peptides into micelles using quenching of Trp fluorescence. Results of CD studies indicated that two of the Trp‐incorporated peptides, STR‐W1 and STR‐W14, exhibited helical folding in the hydrophobic region of cetyltrimethylammonium chloride micelle. The NMR structural analysis of the apo STR‐W14 revealed that the conformation in the C‐terminus GXXH region significantly differred between the apo state in the micelle and the reported Zn‐bound state of stromelysin‐1 in crystal structures. The structural analyses of the qualitative Zn‐binding properties of this motif peptide provide an interesting Zn‐binding mechanism: the minimum consensus motif in the metzincin clan, a basic zinc‐binding motif with an extended GXXH region, has the potential to serve as a preorganized Zn binding scaffold in a hydrophobic environment. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

20.
Factor B and C2 are two central enzymes for complement activation. They are multidomain serine proteases and require cofactor binding for full expression of proteolytic activities. We present a 2.1 A crystal structure of the serine protease domain of factor B. It shows a number of structural motifs novel to the chymotrypsin fold, which by sequence homology are probably present in C2 as well. These motifs distribute characteristically on the protein surface. Six loops surround the active site, four of which shape substrate-binding pockets. Three loops next to the oxyanion hole, which typically mediate zymogen activation, are much shorter or absent. Three insertions including the linker to the preceding domain bulge from the side opposite to the active site. The catalytic triad and non-specific substrate-binding site display active conformations, but the oxyanion hole displays a zymogen-like conformation. The bottom of the S1 pocket has a negative charge at residue 226 instead of the typical 189 position. These unique structural features may play different roles in domain-domain interaction, cofactor binding and substrate binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号