首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
De-etherification of 6,6′-di-O-tritylsucrose hexa-acetate (2) with boiling, aqueous acetic acid caused 4→6 acetyl migration and gave a syrupy hexa-acetate 14, characterised as the 4,6′-dimethanesulphonate 15. Reaction of 2,3,3′4′,6-penta-O-acetylsucrose (5) with trityl chloride in pyridine gave a mixture containing the 1′,6′-diether 6 the 6′-ether 9, confirming the lower reactivity of HO-1′ to tritylation. Subsequent mesylation, detritylation, acetylation afforded the corresponding 4-methanesulphonate 8 1′,4-dimethanesulphonate 11. Reaction of these sulphonates with benzoate, azide, bromide, and chloride anions afforded derivatives of β-D-fructofuranosyl α-D-galactopyranoside (29) by inversion of configuration at C-4. Treatment of the 4,6′-diol 14 the 1,′4,6′-triol 5, the 4-hydroxy 1′,6′-diether 6 with sulphuryl chloride effected replacement of the free hydroxyl groups and gave the corresponding, crystalline chlorodeoxy derivatives. The same 4-chloro-4-deoxy derivative was isolated when the 4-hydroxy-1′,6′-diether 6 was treated with mesyl chloride in N,N-dimethylformamide.  相似文献   

2.
Reaction of 2,3-di-O-acetyl-1,6-anhydro-β-D-galactopyranose (2) with 2,3,4,6-tetra- O-acetyl-α-D-galactopyranosyl bromide in the presence of mercuric cyanide and subsequent acetolysis gave 1,2,3,6-tetra-O-acetyl-4-O-(2,3,4,6-tetra-O-acetyl-α-D-galactopyranosyl)-α-D-galactopyranose (4, 40%) and 1,2,3,6-tetra-O-acetyl-4-O-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl)-α-D-galactopyranose (5, 30%). Similarly, reaction of 2,4-di-O-acetyl-1,6-anhydro-β-D-galactopyranose (3) gave 1,2,4,6-tetra-O-acetyl-3-O-(2,3,4,6-tetra-O-acetyl-α-D-galactopyranosyl)-α-D-galactopyranose (6, 46%) and 1,2,4,6-tetra-O-acetyl-3-O-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl)-α-D-galactopyranose (7, 14%). The anomeric configurations of 4-7 were assigned by n.m.r. spectroscopy. Deacetylation of 4-7 afforded 4-O-α-D-galactopyranosyl-D-galactose (8), 4-O-β-D-galactopyranosyl-D-galactose (9), 3-O-α-D-galactopyranosyl-D-galactose (10), and 3-O-β-D-galactopyranosyl-D-galactose (11), respectively.  相似文献   

3.
The influence substituents on the hydrolysis of substituted phenyl α-D-mannopyranosides by α-D-mannosidase from Medicago sativa L. has been investigated. As indicated by structure-activity relations, the electronic effect of the substituent has an influence on the rate of formation of the intermediate mannosyl-enzyme complex. This effect depends not only on the nature of the substituent, but also on its position (meta or para) and on the temperature of the experiment. Hammett-type linear free energy relationships show that the reaction constant p changes its sign at ~27°. Substrates with strong electron-withdrawing groups show values of log V that are linearly related to 1/T, whereas the Arrhenius plots for other substrates are severely curved. This complex behaviour is tentatively explained by assuming that some meta-substituents have an unusual, temperature- and substituent-dependent influence on the formation of the Michaelis—Menten complex.  相似文献   

4.
Conversion of benzyl αβ-D-galactofuranoside into the 5,6-O-[α-(dimethyl-amino)benzylidene] derivative, followed by acetylation of HO-2 and HO-3, and selective ring opening or the acetal, gave benzyl 2,3-di-O-acetyl-6-O-benzoyl-αβ-D-galactofuranoside(4). The title disaccharide was synthesised from4 by reaction with 3,4,6-tri-O-acetyl-α-D-galactofuranose 1,2-(methyl orthoacetate) followed by removal of protecting groups  相似文献   

5.
Rate coefficients and activation parameters were determined for the hydrochloric acid-catalysed hydrolysis of substituted phenyl α-D-galactopyranosides. Application of the Hammett—Zucker and the Bunnett criteria leads to contradictory conclusions about the mechanism. Substituents have only a small influence on the reaction. Under comparable conditions, the phenyl α-D-galactopyranosides hydrolyse faster than the corresponding β anomers. Most probably, these α anomers hydrolyse via the cyclic mechanism with protonation of the exocyclic oxygen atom.  相似文献   

6.
The title disaccharide (16) has been synthesized in 50% overall yield by way of condensation of 4,6-di-O-acetyl-2,3-O-carbonyl-α-D-mannopyranosyl bromide 5 with methyl 2,3-O-isopropylidene-α-L-rhamnopyranoside (1) in chloroform solution, in the presence of silver oxide. The disaccharide was characterized as the crystalline isopropyl alcoholate of methyl 4-O-β-D-mannopyranosyl-α-L-rhamnopyranoside (11) and as 1,2,3-tri-O acetyl-4-O- (2,3,4,6-tetra-O-acetyl-β-D-mannopyranosyl)-α-L-rhamnopyranose (15). Methyl β-D-mannopyranoside isopropyl alcoholate 7 was readily obtained in 85% yield via the reaction of bromide 5 with methanol.Reduction of 2,3-di-O-methyl-L-rhamnose with sodium borohydride, followed by acetylation, may result in the formation of an appreciable proportion of a boric ester, namely 1,5-di-O-acetyl-4-deoxy-2,3-di-O-methyl-L-rhamnitol-4-yl dimethyl borate, depending on the procedure used.  相似文献   

7.
Condensation of dimeric 3,4,6-tri-O-acetyl-2-deoxy-2-nitroso-α-D-glucopyranosyl chloride (1) with 1,2-O-isopropylidene-α-D-glucofuranurono-6,3-lactone (2) gave 1,2-O-isopropylidene-5-O-(3,4,6-tri-O-acetyl-2-deoxy-2-hydroxyimino-α-D-arabino-hexopyranosyl)-α-D-glucofuranurono-6,3-lactone (3). Benzoylation of the hydroxyimino group with benzoyl cyanide in acetonitrile gave 1,2-O-isopropylidene-5-O-(3,4,6-tri-O-acetyl-2-benzoyloxyimino-2-deoxy-α-D-arabino-hexopyranosyl)-α-D-glucofuranurono-6,3-lactone (4). Compound 4 was reduced with borane in tetrahydrofuran, yielding 5-O-(2-amino-2-deoxy-α-D-glucopyranosyl)-1,2-O-isopropylidene-α-D-glucofuranose (5), which was isolated as the crystalline N-acetyl derivative (6). After removal of the isopropylidene acetal, the pure, crystalline title compound (10) was obtained.  相似文献   

8.
Hydrogenation, severally, of methyl 3-azido-2,3,6-trideoxy-β-D-erythro-hex-5-enopyranoside, its 3-benzamido analogue, and methyl 2,6-dideoxy-β-D-threo-hex-5-enopyranoside in the presence of palladium-on-barium sulphate gave the corresponding 6-deoxy-β-D-hexopyranoside derivatives. Stereoselective addition of hydrogen was observed in each case. Methyl 2,6-dideoxy-β-D-arabino-hexopyranoside was also prepared by reductive dehalogenation of methyl 3,4-di-O-benzoyl-6-bromo-2,6-dideoxy-β-D-arabino-hexopyranoside.  相似文献   

9.
The structure of neoschaftoside is shown for the first time to be 6-C-β-d-glucopyranosyl-8-C-β-l-arabinopyranosylapigenin. A variety of chemical and spectroscopic techniques are involved.  相似文献   

10.
The crystal structure of α-D-Manp-(1→3)-β-D-Manp-(1→4)-α-D-GlcNAcp has been determined by the direct method using the multi-solution, tangent formula, and “magic integer” procedures. The space group is P22, and 2 molecules are in the unit cell with a  9.894 (5), b  10.372 (6), c  11.816 (6) Å, and β  95.03° (6). The structure was refined to R 0.059 for 2099 reflections measured with Mo Kα radiation. Difference synthesis showed all the hydrogen atoms, and indicated a partial (~30%) substitution of the α-anomer molecules by the β-anomer molecules. The D-mannopyranose and the D-glucopyranose have the normal 4C1 conformation; an intramolecular hydrogen-bond O-3″-H.....O-5′ (2.703 Å) stabilises the GlcNAc in relation to β-D-mannopyranose.  相似文献   

11.
Quaternary ammonium and triphenylphosphonium salts of 2,3,4-tri-O-benzyl-6-O-(N-phenylcarbamoyl)-D-glucopyranosyl bromide were readily prepared by reaction with tertiary amines and triphenylphosphine under anhydrous conditions. Methanolysis of these salts was studied to determine the conditions of solvent and temperature that would produce the highest yields of α-D-glucosides. The quaternary ammonium salts gave the highest yields with solvents of low dielectric constant and room temperature. The phosphonium salts gave moderate yields with diethyl ether at 50°. The synthesis of methyl 2,3,4-tri-O-benzyl-6-O-(2,3,4,6-tetra-O-benzyl-α-D-glucopyranosyl)-α-D-glucopyranoside by treatment of the quaternary ammonium salt of 2,3,4,6-tetra-O-benzyl-α-D-glucopyranosyl bromide with methyl 2,3,4-tri-O-benzyl-α-D-glucopyranoside was studied as a model for the synthesis of oligosaccharides. The anomeric composition of the disaccharide product could be easily determined from the optical rotation since the specific rotations of both the final product and of the gentiobioside analog are known. Under the best conditions, the yield of disaccharide was low (50%) and the reactions were not completely stereoselective.  相似文献   

12.
3-Azido-2,4,6-tri-O-benzyl-3-deoxy-α-D-glucopyranosyl chloride (7), prepared conventionally from the azido precursor 2, was coupled with “diisopropylidene-D-pinitol” (8) to give the α-D-glucoside 9 in good yield, together with some β anomer. Removal of the O-benzyl groups from 9 and reduction of the azido group to ?NH2 were accomplished simultaneously. Further deprotection yielded 11, a 3-amino-3-deoxy-α-D-glucoside of D-pinitol (1a). Compound 11 was converted into the (impure) 3-acetamidino hydrochloride 12. The synthesis of 3,6-epimino-D-glucosides was accomplished by ring closure of the 3-N-tosyl-6-O-tosyl intermediates 17 and 13. The products, after deprotection, were methyl 3,6-dideoxy-3,6-epimino-β-D-glucopyranaside (20) and the novel 3,6-epimino analog 15 of the pinitol D-glucoside 11.  相似文献   

13.
The effect of phenols on the hydrolysis of substituted phenyl β-d-gluco- and β-d-xylo-pyranosides by β-d-glucosidase from Stachybotrys atra has been investigated. Depending on the glycon part of the substrate and on the phenol substituent, the hydrolysis is either inhibited or activated. With aryl β-d-xylopyranosides, transfer of the xylosyl residue to the phenol, with the formation of new phenyl β-d-xylopyranosides, is observed. With aryl β-d-glucopyranosides, such transfer does not occur when phenols are used as acceptors, but it does occur with anilines. A two-step mechanism, in which the first step is partially reversible, is proposed to explain these observations. A qualitative analysis of the various factors determining the overall effect of the phenol is given.  相似文献   

14.
Quaternary ammonium and phosphonium salts were readily obtained by treating 2,3,4,6-tetra-O-benzyl-α-D-galactopyranosyl bromide with tertiary amines and phosphines in various solvents under anhydrous conditions. Optical rotations and n.m.r. spectra of the hygroscopic syrups indicated that they exist mainly in the β-D configuration. Several dialkyl sulfides reacted very slowly with the galactosyl bromide and no conclusive evidence for sulfonium salt formation was obtained. 2,3,4,6-Tetra-O-benzyl-α-D-galactopyranosyl chloride failed to react with any of the nucleophiles.Methanolysis reactions of the phosphonium salts were too slow to be practical and were not studied extensively. Methanolyses of several quaternary ammonium salts in various solvents were not completely stereospecific, but gave good yields of methyl 2,3,4,6-tetra-O-benzyl-α-D-galactopyranoside. Attempted reactions of benzyl 2-O-benzoyl-4,6-O-benzylidene-β-D-galactopyranoside with quaternary ammonium salts derived from 2,3,4,6-tetra-O-benzyl-α-D-galactopyranosyl bromide failed to produce the corresponding derivative of 3-O-(α-D-galactopyranosyl)-D-galactose.  相似文献   

15.
Benzoylation of D-glycero-L-manno-heptono-1,4-lactone (1) with benzoyl chloride and pyridine for 2 h afforded crystalline penta-O-benzoyl-D-glycero-L-manno-heptono-1,4-lactone (2), but a large excess of reagent during 8 h also led to 2,5,6,7-tetra-O- benzoyl-3-deoxy-D-lyxo-hept-2-enono-1,4-lactone (3). Catalytic hydrogenation of 3 was stereoselective and gave 2,5,6,7-tetra-O-benzoyl-3-deoxy-D-galacto-heptono-1,4-lactone (4). Debenzoylation of 4 followed by oxidative decarboxylation with ceric sulfate in aqueous sulfuric acid gave 2-deoxy-D-lyxo-hexose (5). Application of the same reaction to 3-deoxy-D-gluco-heptono-1,4-lactone afforded 2-deoxy-D-arabino-hexose (6).  相似文献   

16.
17.
Twenty-one alkyl β-D-galactopyranosides were synthesised and hydrolysed in hydrochloric acid. Application of the Hammett-Zucker criterion indicates a unimolecular (A-1) mechanism. The activation parameters indicate an isoenthalpic reaction series. Galactosides having secondary-alkyl aglycon groups belong to the same series, but the rate of hydrolysis is slightly increased by the entropy factor. The influence of the aglycon group can be correlated with the Robinson-Matheson Φ parameter.  相似文献   

18.
Colon cancer is the third most common malignancy in both sexes of Korea. Here, we investigated anti-colorectal cancer effects of 1,2,3,4,6-penta-O-galloyl-β-d-glucose (PGG), a gallotannin from Galla rhois, and its possible mechanisms. PGG induced cytotoxicity and decreased proliferation of colon cancer cells without affecting normal colon fibroblasts. PGG inhibited clonogenic ability and induced apoptosis in cancer cells. One of the underlying mechanisms of the anti-cancer effect exerted by PGG, was owing to the induction p53 expression, a well-known tumor suppressor, and increased in P21, the representative target gene of p53. PGG affected cell-cycle- or apoptosis-related proteins such as cyclin E, CDK2, and Bcl-2, cleaved caspase-3. Also, PGG induced caspase-3/7 activity. These data suggest that PGG exerts anti-colorectal cancer effects.  相似文献   

19.
A 5-stage synthesis of the title compound (11), the first example of a secondary deoxyfluoroketose, is described. The synthesis comprised the following reaction sequence: D-fructose→1,2:4,5-di-O-isopropylidene-β-D-fructopyranose (4)→1,2:4,5-di-O-isopropylidene-3-O-tosyl-β-D-fructopyranose (3)→ 3,4-anhydro-1,2-O-isopropylidene-β-D-ribo-hexulopyranose (9)→4-deoxy-fluoro-1,2-O-isopropylidene-β-D-xylo-hexulopyranose (11). Fluoride displacement at C-4 in 9 was effected with tetrabutyl-ammonium fluoride in methyl cyanide. Similar treatment of either 3 or 1,2:4,5-di-O-isopropylidene-3-O-tosyl-β-D-ribo-hexulopyranose (5) failed to yield a fluoro derivative. Compound 5 was prepared by the sequence 4→1,2:4,5-di-O-isopropylidene-β-D-erythro-hexo-2,3-diulopyranose (6)→1,2:4,5-di-O-isopropylidene-β-D-ribo-hexulopyranose (7)→5.  相似文献   

20.
2-Deoxy-β-d-lyxo-hexose (2-deoxy-β-d-galactose, C6H12O5), Mr = 164.16, is monoclinic, P21 with a = 9.811(1), b = 6.953(1), c = 5.315(1) Å, β = 91.58(2)°, V = 362.5(1) Å3, Z = 2, and Dx = 1.504 g.cm?3. The structure was solved by direct methods (MULTAN 79) and refined to R = 0.032 for 800 observed reflections. Each hydroxyl oxygen, acting both as donor and acceptor, is involved in a hydrogen-bonding system, which consists of infinite helical chains around the crystallographic screw axes. Moreover, weak interactions allow the incorporation of the ring-oxygen atoms into an interconnected network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号