首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proliferation of Propionibacterium acnes (P. acnes) is one of the main pathogenetic mechanisms of acne. Antimicrobial peptides with low‐drug resistance and nonresidual are potential anti‐acne agents. In this study, two antimicrobial peptides named temporin‐1Dra and moronecidin were synthesized and tested their antimicrobial activity against P. acnes in vitro and in vivo. These two peptides inhibited the growth of Escherichia coli, Staphylococcus aureus, Candida albicans, and P. acnes. The minimal inhibitory concentrations (MICs) of temporin‐1Dra and moronecidin to P. acnes were 30 and 10 μM, respectively. Both peptides exhibited strong resistance to heat and pH, but no obvious cytotoxicity to HaCaT cells. They also displayed persistent antimicrobial activities in the microbial challenge test. In the P. acnes‐induced inflammation mouse model, moronecidin significantly decreased the ear swelling thickness in a concentration‐dependent manner. At the 14th day after injection, 20 μg/day moronecidin reduced the ear swelling thickness to 46.15 ± 5.23% compared with the normal cream group. Tissue staining showed that moronecidin effectively reduced abscess and thickness of the dermis layer. Our results indicate that the antimicrobial peptide moronecidin could be developed as a potential natural anti‐acne agent in the cosmetics or pharmaceutical industries.  相似文献   

2.
Temporin‐1Tl (TL) is a 13‐residue frog antimicrobial peptide (AMP) exhibiting potent antimicrobial and anti‐inflammatory activity. To develop novel AMP with improved anti‐inflammatory activity and antimicrobial selectivity, we designed and synthesized a series of TL analogs by substituting Trp, Arg and Lys at selected positions. Except for Escherichia coli and Staphylococcus epidermidis, all TL analogs exhibited retained or increased antimicrobial activity against seven bacterial strains including three methicillin‐resistant Staphylococcus aureus strains compared with TL. TL‐1 and TL‐4 showed a little increase in antimicrobial selectivity, while TL‐2 and TL‐3 displayed slightly decreased antimicrobial selectivity because of their about twofold increased hemolytic activity. All TL analogs demonstrated greatly increased anti‐inflammatory activity, evident by their higher inhibition of the production tumor necrosis factor‐α (TNF‐α) and nitric oxide and the mRNA expression of inducible nitric oxide synthase and TNF‐α in lipopolysaccharide (LPS)‐stimulated RAW264.7 macrophage cells, compared with TL. Taken together, the peptide anti‐inflammatory activity is as follows: TL‐2 ≈ TL‐3 ≈ TL‐4 > TL‐1 > TL. In addition, LPS binding ability of the peptides corresponded with their anti‐inflammatory activity. These results apparently suggest that the anti‐inflammatory activity of TL analogs is associated with the direct binding ability between these peptides and LPS. Collectively, our designed TL analogs possess improved anti‐inflammatory activity and retain antimicrobial activity without a significant increase in hemolysis. Therefore, it is evident that our TL analogs constitute promising candidates for the development of peptide therapeutics for gram‐negative bacterial infection. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

3.
Natural peptides with antimicrobial properties are deeply investigated as tools to fight bacteria resistant to common antibiotics. Small peptides, as those belonging to the temporin family, are very attractive because their activity can easily be tuned after small modification to their primary sequence. Structure‐activity studies previously reported by us allowed the identification of one peptide, analogue of temporin B, TB_KKG6A, showing, unlike temporin B, antimicrobial activity against both Gram‐positive and Gram‐negative bacteria. In this paper, we investigated the antimicrobial and anti‐inflammatory activity of the peptide TB_KKG6A against Pseudomonas aeruginosa. Interestingly, we found that the peptide exhibits antimicrobial activity at low concentrations, being able to downregulate the pro‐inflammatory chemokines and cytokines interleukin (IL)‐8, IL‐1β, IL‐6 and tumor necrosis factor‐α produced downstream infected human bronchial epithelial cells. Experiments were carried out also with temporin B, which was found to show pro‐inflammatory activity. Details on the interaction between TB_KKG6A and the P. aeruginosa LPS were obtained by circular dichroism and fluorescence studies. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

4.
How to target cancer cells with high specificity and kill cancer cells with high efficiency remains an urgent demand for anticancer drugs. Temporin‐La, which belongs to the family of temporins, presents antitumor activity against many cancer cell lines. We first used a whole bioinformatic analysis method as a platform to identify new anticancer antimicrobial peptides (AMPs). On the basis of these results, we designed a temporin‐La analog (temporin‐Las) and related constructs containing the Arg‐Gly‐Asp (RGD) tripeptide, the integrin αvβ3 homing domain (RGD‐La and RGD‐Las). We detected a link between the net charges and integrin αvβ3 expression of cancer cell lines and the antitumor activities of these peptides. Temporin‐La and its synthetic analogs inhibited cancer cell proliferation in a dose‐dependent manner. Evidence was provided that the affinity between RGD‐Las and tumor cell membranes was stronger than other tested peptides using a pull‐down assay. Morphological changes on the cell membrane induced by temporin‐La and RDG‐Las, respectively, were examined by scanning electron microscopy. Additionally, time‐dependent morphological changes were detected by confocal microscopy, where the binding process of RGD‐Las to the cell membrane could be monitored. The results indicate that the electrostatic interaction between these cationic peptides and the anionic cell membrane is a major determinant of selective cell killing. Thus, the RGD tripeptide is a valuable ligand motif for tumor targeting, which leads to an increased anticancer efficiency by RGD‐Las. These AMP‐derived peptides have clinical potential as specifically targeting agents for the treatment of αvβ3 positive tumors. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

5.
XPF‐St7 (GLLSNVAGLLKQFAKGGVNAVLNPK) is an antimicrobial peptide isolated from Silurana tropicalis. We developed an α‐helical segment of XPF‐St7 termed as XPF2. Using the XPF2 as a framework, we increased the positive net charge of XPF2 by amino acid substitutions, and thus obtained two novel antimicrobial peptides XPF4 and XPF6. These were each fused with an ubiquitin tag and successfully expressed in Escherichia coli. This ubiquitin fusion system may present a viable alternative for industrial production of antimicrobial peptides. XPF4 and XPF6 showed much better overall antimicrobial activity against both Gram‐negative and Gram‐positive bacteria than XPF2. The therapeutic index of XPF4 and XPF6 was 5.6‐fold and 6.7‐fold of XPF2, respectively. Bacterial cell membrane permeabilization and genomic DNA interaction assays were utilized to explore the mechanism of action of XPF serial peptides. The results revealed that the target of these antimicrobial peptides was the bacterial cytoplasmic membrane. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

6.
Two novel antimicrobial peptides with similarity to brevinin‐2 family are purified and characterized from the skin secretions of the frog, Rana nigrovittata. Their amino acid sequences were determined as GAFGNFLKGVAKKAGLKILSIAQCKLSGTC (brevinin‐2‐RN1) and GAFGNFLKGVAKKAGLKILSIAQCKLFGTC (brevinin‐2‐RN2), respectively, by Edman degradation. Different from brevinin‐2, which is composed of 33 amino acid residues (aa), both brevinin‐2‐RN1 and ‐RN2 contain 30 aa. Five cDNA sequences (Genbank accession numbers, EU136465‐9) encoding precursors of brevinin‐2‐RN1 and ‐RN2 were screened from the skin cDNA library of R. nigrovittata. These precursors are composed of 72 aa including a predicted signal peptide, an acidic spacer peptide, and a mature brevinin‐2‐RN. Both brevinin‐2‐RN1 and ‐RN2 showed strong antimicrobial activities against gram‐positive and gram‐negative bacteria and fungi. The current work identified and characterized two novel antimicrobial peptides with unique primary structure. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

7.
Novel antimicrobial peptides (AMP), designated Fa-AMP1 and Fa-AMP2, were purified from the seeds of buckwheat (Fagopyrum esculentum Moench.) by gel filtration on Sephadex G75, ion-exchange HPLC on SP COSMOGEL, and reverse-phase HPLC. They were basic peptides having isoelectric points of over 10. Fa-AMP1 and Fa-AMP2 had molecular masses of 3,879 Da and 3,906 Da on MALDI-TOF MS analysis, and their extinction coefficients in 1% aqueous solutions at 280 nm were 42.8 and 38.9, respectively. Half of all amino acid residues of Fa-AMP1 and Fa-AMP2 were cysteine and glycine, and they had continuous sequences of cysteine and glycine. The concentrations of peptides required for 50% inhibition (IC50) of the growth of plant pathogenic fungi, and Gram-positive and -negative bacteria were 11 to 36 μg/ml. The structural and antimicrobial characteristics of Fa-AMPs indicated that they are a novel type of antimicrobial peptides belonging to a plant defensin family.  相似文献   

8.
The present study describes the synthesis and biological studies of a small series of head‐to‐tail cyclic tetrapeptides of the general structure c(Lys‐β2,2‐Xaa‐Lys) containing one lipophilic β2,2‐amino acid and Lys, Gly, Ala, or Phe as the Xaa residue in the sequence. The peptides were investigated for antimicrobial activity against gram‐positive and gram‐negative reference strains and 30 multiresistant clinical isolates including strains with extended spectrum β‐lactamase—carbapenemase (ESBL‐CARBA) production. Toxicity was determined against human red blood cells. The most potent peptides showed high activity against the gram‐positive clinical isolates with minimum inhibitory concentrations of 4–8 μg/mL and low haemolytic activity. The combination of high antimicrobial activity and low toxicity shows that these cyclic tetrapeptides containing lipophilic β2,2‐amino acids form a valuable scaffold for designing novel antimicrobial agents.  相似文献   

9.

The skin secretions of amphibians are a rich source of bioactive peptides. We isolated chensirin-1 and chensirin-2 from the skin secretion of the Chinese frog Rana chensinensis. Sephadex-G-50 and RP-HPLC were employed to purify these peptides. The amino acid sequences of these peptides were VLPLVGNLLNDLLGE and IIPLPLGYFAKKT, respectively, as determined by Edman degradation. The molecular weights were 1578.7 and 1460.8 Da, respectively, as analyzed by HPLC-ESI-MS. The chensirin cDNA was cloned by 5′ and 3′ amplification of cDNA ends, synthesized and purified. The antibacterial activities of the chensirins were tested using minimum inhibitory concentration, the results indicated that chensirins inhibit the growth of gram-negative and gram-positive bacteria. Among them, chensirin-1 is a novel peptide with a higher antibacterial activity compared to other similar antimicrobial peptides. These low molecular weight peptides with good antimicrobial efficacy are considered potential sources for developing new antimicrobial agents to improve traditional drug resistance.

  相似文献   

10.
The overuse of antibiotics has resulted in the emergence of antibiotic‐resistant bacteria, which presents an urgent need for new antimicrobial agents. At present, antimicrobial peptides have attracted a great deal of attention from researchers. However, antimicrobial peptides often affect a broad range of microorganisms, including the normal flora in a host organism. In the present study, we designed a novel hybrid antimicrobial peptide, expressed the hybrid peptide, and studied its specific target. The hybrid peptide, named T‐catesbeianin‐1, which includes the FyuA‐binding domain of pesticin and the peptide catesbeianin‐1, was designed and expressed in Pichia pastoris X‐33. Then, we determined the antimicrobial activity, cytotoxicity, and specific target of the peptide. T‐catesbeianin‐1 has strong antimicrobial activity and binds to FyuA to inhibit or kill Escherichia coli present in clinical specimens and mixed‐species culture. In summary, these findings suggested that T‐catesbeianin‐1 might be promising and specific antibiotic agent for therapeutic application against fyuA+ E. coli.  相似文献   

11.
12.
The skins of amphibians secrete small antimicrobial peptides that fight infection and are being explored as potential alternatives to conventional antibiotics. In this study we combined mass spectrometry with cDNA sequencing to examine antimicrobial peptides in skin secretions from the Chinese frog Rana dybowskii. Thirteen peptides having precursor sequences that resemble known antimicrobial peptides from this genus were identified, ten of which were members of previously described peptide families based on their primary structures; i.e., brevinin-1, Japonicin-1, brevinin-2 and temporin. The other three peptides from R. dybowskii, which were named dybowskin-1CDYa, dybowskin-2 CDYa and dybowskin-2CDYb, had different amino acid compositions and little sequence similarity to known antimicrobial peptides. The carboxyl terminus of dybowskin-1CDY lacked amidation and is therefore clearly distinct from temporin peptides, whereas dybowskin-2CDYa and dybowskin-2CDYb consisted of 18 amino acids and were rich in Arg residues. Chemically synthesized peptides corresponding to mature dybowskin-1CDYa and dybowskin-2CDYa had strong antimicrobial activity and caused little hemolysis of human erythrocytes, suggesting they may serve as interesting templates for the development of novel antibiotics.  相似文献   

13.
Yokoyama S  Kato K  Koba A  Minami Y  Watanabe K  Yagi F 《Peptides》2008,29(12):2110-2117
Novel antimicrobial peptides (AMP), designated Cy-AMP1, Cy-AMP2, and Cy-AMP3, were purified from seeds of the cycad (Cycas revoluta) by a CM cellulofine column, ion-exchange HPLC on SP COSMOGEL, and reverse-phase HPLC. They had molecular masses of 4583.2 Da, 4568.9 Da and 9275.8 Da, respectively, by MALDI–TOF MS analysis. Half of the amino acid residues of Cy-AMP1 and Cy-AMP2 were cysteine, glycine and proline, and their sequences were similar. The sequence of Cy-AMP3 showed high homology to various lipid transfer proteins. For Cy-AMP1 and Cy-AMP2, the concentrations of peptides required for 50% inhibition (IC50) of the growth of plant pathogenic fungi, Gram-positive and Gram-negative bacteria were 7.0–8.9 μg/ml. The Cy-AMP3 had weak antimicrobial activity. The structural and antimicrobial characteristics of Cy-AMP1 and Cy-AMP2 indicated that they are a novel type of antimicrobial peptide belonging to a plant defensin family.  相似文献   

14.
The cell‐penetrating peptide Tat (48–60) (GRKKRRQRRRPPQ) derived from HIV‐1 Tat protein showed potent antibacterial activity (MIC: 2–8 µM ). To investigate the effect of dimerization of Tat (48–60) analog, [Tat(W): GRKKRRQRRRPWQ‐NH2], on antimicrobial activity and mechanism of bactericidal action, its dimeric peptides, di‐Tat(W)‐C and di‐Tat(W)‐K, were synthesized by a disulfide bond linkage and lysine linkage of monomeric Tat(W), respectively. From the viewpoint of a weight basis and the monomer concentration, these dimeric peptides displayed almost similar antimicrobial activity against six bacterial strains tested but acted more rapidly against Staphylococcus aureus on kinetics of bactericidal activity, compared with monomeric Tat(W). Unlike monomeric Tat(W), these dimeric peptides significantly depolarized the cytoplasmic membrane of intact S. aureus cells at MIC and induced dye leakage from bacterial‐membrane‐mimicking egg yolk L ‐α‐phosphatidylethanolamine/egg yolk L ‐α‐phosphatidyl‐DL ‐glycerol (7:3, w/w) vesicles. Furthermore, these dimeric peptides were less effective to translocate across lipid bilayers than monomeric Tat(W). These results indicated that the dimerization of Tat analog induces a partial change in the mode of its bactericidal action from intracellular target mechanism to membrane‐targeting mechanism. Collectively, our designed dimeric Tat peptides with high antimicrobial activity and rapid bactericidal activity appear to be excellent candidates for future development as novel antimicrobial agents. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
In this study, we extracted and purified antimicrobial peptides (AMPs) secreted from skin of Euphlyctis cyanophlyctis using reverse phase-high performance liquid chromatography. Three AMPs were isolated from skin secretions of this frog and sequenced using tandem mass spectrometry. The purified peptides were named buforin-EC (1875.05 ± 0.5 Da), cyanophlyctin (2347.50 ± 0.5 Da) and temporin-ECa (1013.33 ± 0.5 Da). Multiple alignments and homology search showed that buforin-EC, cyanophlyctin and temporin-ECa had a homology of 71.43, 47.1, and 69.23% to buforin II, brevinin-2EC, and temporin-1CSc, respectively. Antimicrobial tests demonstrated that our peptides have a great antimicrobial effect on both gram-positive and gram-negative bacteria. The results indicated that they have an overall minimum inhibitory concentration (MIC) below 13 μM against E. coli. No hemolysis was observed in around of their MIC values. In conclusion, skin secretions of E. cyanophlyctis contain a novel class of AMPs with the proper characteristics.  相似文献   

16.
Antimicrobial peptides are small cationic peptides that possess a large spectrum of bioactivities, including antimicrobial, anti‐inflammatory and antioxidant activities. Several antimicrobial peptides are known to inhibit lipopolysaccharide (LPS)‐induced inflammation in vitro and to protect animals from sepsis. In this study, the cellular anti‐inflammatory and anti‐endotoxin activities of Os and Os‐C, peptides derived from the carboxy‐terminal of a tick defensin, were investigated. Both Os and Os‐C were found to bind LPS in vitro, albeit to a lesser extent than polymyxin B and melittin, known endotoxin‐binding peptides. Binding to LPS was found to reduce the bactericidal activity of Os and Os‐C against Escherichia coli confirming the affinity of both peptides for LPS. At a concentration of 25 µM, the nitric oxide (NO) scavenging activity of Os was higher than glutathione, a known NO scavenger. In contrast, Os‐C showed no scavenging activity. Os and Os‐C inhibited LPS/IFN‐γ induced NO and TNF‐α production in RAW 264.7 cells in a concentration‐dependent manner, with no cellular toxicity even at a concentration of 100 µM. Although inhibition of NO and TNF‐α secretion was more pronounced for melittin and polymyxin B, significant cytotoxicity was observed at concentrations of 1.56 µM and 25 µM for melittin and polymyxin B, respectively. In addition, Os, Os‐C and glutathione protected RAW 264.7 cells from oxidative damage at concentrations as low as 25 µM. This study identified that besides previously reported antibacterial activity of Os and Os‐C, both peptides have in addition anti‐inflammatory and anti‐endotoxin properties. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

17.
Two antimicrobial peptides (piceain 1 and 2) derived from sequences encoded Picea sitchensis are identified. Their amino acid sequences are KSLRPRCWIKIKFRCKSLKF and RPRCWIKIKFRCKSLKF, respectively. One intra‐molecular disulfide bridge is formed by these two half‐cysteines in both piceain 1 and 2. Antimicrobial activities of synthesized piceains against several kinds of microorganisms were tested. They showed antimicrobial activities against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and fungus Candida albicans but little antimicrobial activity against Bacillus subtilis. The results of nematicidal test showed they exerted strong nematicidal activities against Caenorhabditis elegans, following exposure for 5 h at concentrations as low as 10 µg/ml. They had weak hemolytic abilities against human and rabbit red cells. At the concentration of 250 µg/ml, they induced red cell hemolysis of less than 5%. Circular dichroism spectra of the two antimicrobial peptides were investigated in several solutions. Their main secondary structure components are β‐sheet and random. The current work provides a novel family of antimicrobial and nematicidal peptides with unique disulfided loop containing nine amino acid residues. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

18.
The broad‐spectrum activity of antimicrobial peptides (AMPs) and low probability of development of host resistance make them excellent candidates as novel bio‐control agents. A number of AMPs are found to be cationic, and a small proportion of these are tryptophan‐rich. The puroindolines (PIN) are small, basic proteins found in wheat grains with proposed roles in biotic defence of seeds and seedlings. Synthetic peptides based on their unique tryptophan‐rich domain (TRD) display antimicrobial properties. Bacterial endospores and biofilms are highly resistant cells, with significant implications in both medical and food industries. In this study, the cationic PIN TRD‐based peptides PuroA (FPVTWRWWKWWKG‐NH2) and Pina‐M (FSVTWRWWKWWKG‐NH2) and the related barley hordoindoline (HIN) based Hina (FPVTWRWWTWWKG‐NH2) were tested for effects on planktonic cells and biofilms of the common human pathogens including Pseudomonas aeruginosa, Listeria monocytogenes and the non‐pathogenic Listeria innocua. All peptides showed significant bactericidal activity. Further, PuroA and Pina‐M at 2 × MIC prevented initial biomass attachment by 85–90% and inhibited >90% of 6‐h preformed biofilms of all three organisms. However Hina, with a substitution of Lys‐9 with uncharged Thr, particularly inhibited Listeria biofilms. The PIN based peptides were also tested against vegetative cells and endospores of Bacillus subtilis. The results provided evidence that these tryptophan‐rich peptides could kill B. subtilis even in sporulated state, reducing the number of viable spores by 4 log units. The treated spores appeared withered under scanning electron microscopy. The results establish the potential of these tryptophan‐rich peptides in controlling persistent pathogens of relevance to food industries and human health. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
The structural similarities between N1 substituted 1,4‐dihydropyridines and the known gp41 inhibitors, NB ‐2 and NB ‐64 , were considered in the current research for the design of some novel anti‐HIV‐1 agents. A series of novel 4‐[4‐arylpyridin‐1(4H)‐yl]benzoic acid derivatives were synthesized and after a comprehensive structural elucidation were screened for in vitro anti‐HIV‐1 activity. Most of the tested compounds displayed moderate to good inhibitory activity against HIV‐1 growth and were evaluated for in vitro cytotoxic activity using XTT assay at the concentration of 100 μm . Among the tested compounds, 1c , 1d and 1e showed potent anti‐HIV‐1 activity against P24 expression at 100 μm with inhibition percentage of 84.00%, 76.42% and 80.50%, respectively. All the studied compounds possessed no significant cytotoxicity on MT‐2 cell line. The binding modes of these compounds to gp41 binding site were determined through molecular docking study. Docking studies proved 1a as the most potent compound and binding maps exhibited that the activities might be attributed to the electrostatic and hydrophobic interactions and additional H‐bonds with the gp41 binding site. The Lipinski's ‘rule of five’ and drug‐likeness criteria were also calculated for the studied compounds. All derivatives obeyed the Lipinski's ‘rule of five’ and had drug‐like features. The findings of this study suggest that novel 4‐[4‐arylpyridin‐1(4H)‐yl]benzoic acid might be a promising scaffold for the discovery and development of novel anti‐HIV‐1 agents.  相似文献   

20.
A series of 1,3‐bis‐chalcone derivatives ( 3a‐i, 6a‐i and 8 ) were synthesized and evaluated antimicrobial, antibiofilm and carbonic anhydrase inhibition activities. In this evaluation, 6f was found to be the most active compound showing the same effect as the positive control against Bacillus subtilis and Streptococcus pyogenes in terms of antimicrobial activity. Biofilm structures formed by microorganisms were damaged by compounds at the minimum inhibitory concentration value between 0.5% and 97%.1,3‐bis‐chalcones ( 3a‐i, 6a‐i and 8 ) showed good inhibitory action against human (h) carbonic anhydrase (CA) isoforms I and II. hCA I and II were effectively inhibited by these compounds, with K i values in the range of 94.33 ± 13.26 to 787.38 ± 82.64 nM for hCA I, and of 100.37 ± 11.41 to 801.76 ± 91.11 nM for hCA II, respectively. In contrast, acetazolamide clinically used as CA inhibitor showed K i value of 1054.38 ± 207.33 nM against hCA I, and 983.78 ± 251.08 nM against hCA II, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号