首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The current study evaluated the possible toxic effects of the water-soluble fraction of crude oil on the general cellular stress-response mechanisms of two dominant representatives of Lake Baikal’s littoral community, the endemic amphipod species Eulimnogammarus verrucosus and E. cyaneus. The acute toxicity effects on the cellular stress-response mechanisms of amphipods were studied in the laboratory by exposing amphipods in water from Lake Baikal to addition of a water-soluble fraction of crude oil at concentrations considered safe for the aquatic environment. The present study found that even short-term exposure to a water-soluble fraction of crude oil at concentration of 50 µg/L, established as the threshold limit for fishery and aquaculture water reservoirs in the Russian Federation, directly affected the general stress-response markers HSP70 and lipid peroxidation and significantly changed the activity of antioxidant enzymes in both studied species. This result confirms the high sensitivity of Baikal endemics to crude oil. Thus, it also indicates that established standards and threshold limit values of oil concentrations estimated for ecological monitoring of general water reservoirs cannot be applied directly to the unique Lake Baikal ecosystem.  相似文献   

2.
The vertical distribution of microorganisms during spring deep-water renewal in Lake Baikal was studied. The downward advection of trophogenic waters was found to create conditions for the extensive growth of microorganisms capable of decomposing and mineralizing organic carbon, nitrogen, and phosphorus in deep water layers. These processes occur annually at spring thermal bars near the underwater slope of Lake Baikal, whereas in its pelagic zone, the deep intrusions of waters rich in organic material are observed only in the years when enhanced deep-water renewal is accompanied by a high spring yield of phytoplankton.  相似文献   

3.
The vertical distribution of microorganisms during spring deep-water renewal in Lake Baikal was studied. The downward advection of trophogenic waters was found to create conditions for the extensive growth of microorganisms capable of decomposing and mineralizing organic carbon, nitrogen, and phosphorus in deep water layers. These processes occur annually at spring thermal bars near the underwater slope of Lake Baikal, whereas in its pelagic zone, the deep intrusions of waters rich in organic material are observed only in the years when enhanced deep-water renewal is accompanied by a high spring yield of phytoplankton.  相似文献   

4.
To diagnose the nutritional status of phytoplankton in Lake Baikal, surveys for the determination of concentrations of particulate carbon (PC), nitrogen (PN) and phosphorus (PP) and their ratios were conducted at six stations in March, June, August and October 1999. The concentrations of PC and PN were lower than, and those of PP were similar to, those in another mesotrophic lake except at the station near the mouth of the largest input river, Selenga River, of Lake Baikal. The PC : PN : PP ratio was 102 : 13 : 1, considerably close to the Redfield ratio. The ratio was constant against spatiotemporal changes. These indicate that phytoplankton in Lake Baikal were exposed to no deficiency in nitrogen nor phosphorus. From a viewpoint of the nutritional status of phytoplankton, Lake Baikal might be viewed as an ocean rather than as a lake.  相似文献   

5.
The phylogenetic relationships and the origin of two groups of rissooid freshwater snails endemic to Lake Baikal were investigated using partial mitochondrial COI, 12S rDNA, and 16S rDNA sequences. The Baikalian Benedictiinae proved to be closely related to the Lithoglyphinae. According to a molecular clock estimate the two groups diverged in the Paleogene. The Benedictiinae might have evolved autochthonously in precursors of Lake Baikal. The Baikalian Baicaliidae are probably most closely related to the Amnicolidae and the Bithyniidae. These groups diverged at the latest during the Cretaceous. Thus the origin of the Baicaliidae predates the origin of the Baikal rift zone. The Baicaliidae evolved probably in other Central Asian freshwater reservoirs. However, the radiation of the extant Baicaliidae only started in the Neogene and might have occurred autochthonously in Lake Baikal. The conchological similarity of the Baicaliidae and the Pyrgulidae is due to convergence. The Pyrgulidae diverged from the common stem lineage of the other hydrobiid families at the latest in the Jurassic. The Bithyniidae is derived from hydrobiids and is related to the Amnicolidae.  相似文献   

6.
Large-scale climate change is superimposed on interacting patterns of climate variability that fluctuate on numerous temporal and spatial scales--elements of which, such as seasonal timing, may have important impacts on local and regional ecosystem forcing. Lake Baikal in Siberia is not only the world's largest and most biologically diverse lake, but it has exceptionally strong seasonal structure in ecosystem dynamics that may be dramatically affected by fluctuations in seasonal timing. We applied time-frequency analysis to a near-continuous, 58-year record of water temperature from Lake Baikal to examine how seasonality in the lake has fluctuated over the past half century and to infer underlying mechanisms. On decadal scales, the timing of seasonal onset strongly corresponds with deviation in the zonal wind intensity as described by length of day (LOD); on shorter scales, these temperature patterns shift in concert with the El Nino-Southern Oscillation (ENSO). Importantly, the connection between ENSO and Lake Baikal is gated by the cool and warm periods of the Pacific Decadal Oscillation (PDO). Large-scale climatic phenomena affecting Siberia are apparent in Lake Baikal surface water temperature data, dynamics resulting from jet stream and storm track variability in central Asia and across the Northern Hemisphere.  相似文献   

7.
The taxonomic composition of microbial communities of Lake Baikal surface microlayer was studied by pyrosequencing of the 16S rDNA amplicons. Statistically reliable differences were found between bacterioneuston of the shallow and deep-water stations. The shallow station community was characterized by higher diversity than the deep-water one. While bacterioneuston communities were shown to be less diverse than the water column communities, their diversity was comparable to that of other biofilm associations. Microbial communities of Lake Baikal surface microlayer were shown to be similar to those of the water column in the composition of predominant phyla, while differing considerably at the genus level. Bacterioneuston of Lake Baikal was comparable to microbial communities of the surface microlayer of other freshwater basins, although it was characterized by high abundance of the Alphaproteobacteria and Verrucomicrobia. High abundance of photoheterotrophs compared to the water column communities of other freshwater basins was another distinctive feature of Lake Baikal bacterioneuston. Our results showed the Lake Baikal surface microlayer to be a specific microbial community with low species diversity and relatively high abundance of photoheterotrophic microorganisms.  相似文献   

8.
Martin  Patrick  Granina  Liba  Martens  Koen  Goddeeris  Boudewijn 《Hydrobiologia》1998,367(1-3):163-174
Oxygen concentration profiles have been measured, by means of with microelectrodes in sediments of Lake Baikal and Lake Malawi, along transects allowing to give a survey of two major ancient Rift lakes: Lake Baikal (Eastern Siberia) and Lake Malawi (East Africa), along depth transects in the constitutive basins of the lakes and/or of relevant depths with regard to oxygen (including including the deepest point, 1680 m, in Lake Baikal). Sediment oxygen penetration depths (SOPs) display very different patterns, depending on the lake in the two lakes. In Lake Baikal, SOPs are variable, show no significant relationship with bathymetric depth and are surprisingly deep on Akademichesky ridge (> 50.0 mm), emphasizing the distinctive feature of this region in the lake. While the Selenga river is an important source of eutrophication, the similarity of SOP-values in the Selenga shallow with those of most other sites suggests either a dilution of organic material by allochthonous matter, or a strong south-to-north transport of particles. In Lake Malawi, available oxygen is restricted to a maximum of three millimetres of the sediment, and there is a negative relationship with bathymetric depth, as a result of a steady decline of oxygen concentration with depth through the water column. Amongst the few parameters known to affect SOPs, the oxygen consumption by the sediment seems the most significant in both lakes. SOP-values furthermore confirm differences in the trophic status of Baikal and Malawi, respectively. The importance of oxygen as a factor likely to create ecological segregation for benthic organisms is discussed. Lake Malawi offers possibilities of bathymetric segregation but no vertical segregation in the sediment. In contrast, no bathymetric segregation related to oxygen is possible in Lake Baikal, but vertical segregation in the sediment is very likely. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Concentrations of trimethylamine oxide (TMAO) and other 'compatible' osmolytes were analyzed in the muscle tissue of Lake Baikal amphipods (Crustacea) in relation to water depth of the freshwater Lake Baikal. Using HPLC and mass spectrometry, glycerophosphoryl choline (GPC), betaine, S-methyl-cysteine, sarcosine, and taurine were detected for the first time in freshwater amphipods. These osmolytes were frequently found in the five species studied but mixtures were too complex to be quantified. The pattern of these osmolytes did not change with respect to water depth. The TMAO concentration, however, was significantly higher in the muscle tissue of amphipods living in deep water than of those living in shallow water, which supports the hypothesis that TMAO acts as a protective osmolyte at increased hydrostatic pressure. We propose that eurybathic amphipods, exposed to raised hydrostatic pressure in the extremely deep freshwater Lake Baikal, have elevated TMAO levels to counteract the adverse effect of high pressure on protein structure. The elevated intracellular osmotic pressure is balanced by upregulating the extracellular hemolymph NaCl concentration.  相似文献   

10.
Lake Baikal, Russian Siberia, was sampled in July 1990 during the period of spring mixing and initiation of thermal stratification. Vertical profiles of temperature, dissolved nutrients (nitrate and soluble reactive phosphorus), phytoplankton biomass, and primary productivity were determined in an eleven-station transect encompassing the entire 636 km length of the lake. Pronounced horizontal variability in hydrodynamic conditions was observed, with the southern region of the lake being strongly thermally stratified while the middle and north basins were largely isothermal through July. The extent of depletion of surface water nutrients, and the magnitude of phytoplankton biomass and productivity, were found to be strongly correlated with the degree of thermal stratification. Horizontal differences likely reflected the contribution of two important factors: variation in the timing of ice-out in different parts of the lake (driving large-scale patterns of thermal stratification and other limnological properties) and localized effects of river inflows that may contribute to the preliminary stabilization of the water column in the face of intense turbulent spring mixing (driving meso-scale patterns). Examination of the relationships between surface water inorganic N and P depletion suggested that during the spring and early summer, phytoplankton growth in unstratified portions of the lake was largely unconstrained by nutrient supplies. As summer progressed, the importance of co-limitation by both N and P became more apparent. Uptake and regeneration rates, measured directly using the stable isotope 15N, revealed that phytoplankton in stratified portions of the lake relied primarily on NH4 as their N source. Rates of NH4 regeneration were in approximate equilibrium with uptake; both processes were dominated by organisms <2 µm. This pattern is similar to that observed for oligotrophic marine systems. Our study underscores the importance of hydrodynamic conditions in influencing patterns of biological productivity and nutrient dynamics that occur in Lake Baikal during its brief growing season.  相似文献   

11.
Analysis of variability and estimation of significance of the differences in morphometric parameters of spores have been carried out for three species of the genus Henneguya (Myxosporidia). Representatives of these species collected both in the same water body (but from different host species) and in geographically distant localities were compared. Thus, we compared samples of Henneguya zschokkei from different host species in Chivyrkui Bay of Baical Lake and in Laptev Sea, and also we compared samples of this species from Baikal Lake with those from Laptev Sea. Materials on Henneguya cerebralis from Baikal Lake were compared with those from Khubsugul Lake; samples of H. cutanea from one host species (Siberian dace) but from water bodies of different type (lake or river) were compared.  相似文献   

12.
The colorless sulfur bacteria Thioploca spp. found in Lake Baikal are probably a marker for the influx of subterranean mineralized fluids. Bacteria act as a biological filter; by consuming sulfide in their metabolism, they detoxicate it and maintain the purity of Lake Baikal’s water. The bacteria were investigated by various techniques. According to analysis of the 16S rRNA gene fragment, Thioploca sp. from Frolikha Bay, Baikal belongs to the clade of freshwater species found in Lake Biwa and Lake Constance; it is most closely related to Thioploca ingrica.  相似文献   

13.
Biological entities and gradients of selected chemicals within the seemingly barren ice layers covering Lake Baikal were investigated. Ice cores 40-68 cm long were obtained from in shore and offshore sites of Southern Lake Baikal during the cold period of a year (March-April) in 2007 and 2008. In microscopic observations of the melted ice, both algae and bacteria were found in considerable numbers (>10(3) cells/L and >10(4) cells/ml, respectively). Among all organisms found, diatom was generally the most predominant taxon in the ice. Interestingly, both planktonic and benthic algae were present in considerable numbers (2-4×10(4) cells/L). Dominant phototrophic picoplankton were comprised of small green algae of various taxa and cyanobacteria of Synechococcus and Cyanobium. The bacterial community consisted mostly of short rod and cocci cells, either free-living or aggregated. Large numbers of yeast-like cells and actinomycete mycelium were also observed. Concentrations of silica, phosphorus, and nitrate were low by an order of magnitude where biota was abundant. The profile of the ice could be interpreted as vertical stratification of nutrients and biomass due to biological activities. Therefore, the organisms in the ice were regarded to maintain high activity while thriving under freezing conditions. Based on the results, it was concluded that the freshwater ice covering the surface of Lake Baikal is considerably populated by extremophilic microorganisms that actively metabolize and form a detritus food chain in the unique large freshwater ecosystem of Lake Baikal.  相似文献   

14.
1. Carotenoids were extracted from macrophytes, sponges, amphipods, fish stomachs, fish livers, fish ovaries and zooplankton in samples collected from various depths in Lake Baikal. 2. Acetone extracts from macrophytes showed a ratio of absorption at wavelengths of 430 and 665 nm consistently in the range 2.1–2.5. Sponges from very shallow water (1.5m) showed a similar ratio, but a sponge from 25m gave a ratio of 6.6, indicating a reduction in the concentration of chlorophyll relative to carotenoids. 3. Extracts from amphipods gave some support for the photoprotection hypothesis, with lower concentrations of carotenoids in amphipods from the deepest water. 4. Some fish took high concentrations of carotenoids into their stomachs, but the concentrations found in their Livers and ovaries were very much lower. Fish appear to be one of the carotenoid sinks in Lake Baikal. 5. Plankton samples showed an apparent inversion, with the highest concentration of carotenoid in the deepest sample, but this was a result of the sinking into deep water of the filamentous diatom Melosira.  相似文献   

15.
High-resolution data collected over the past 60 years by a single family of Siberian scientists on Lake Baikal reveal significant warming of surface waters and long-term changes in the basal food web of the world's largest, most ancient lake. Attaining depths over 1.6 km, Lake Baikal is the deepest and most voluminous of the world's great lakes. Increases in average water temperature (1.21 °C since 1946), chlorophyll a (300% since 1979), and an influential group of zooplankton grazers (335% increase in cladocerans since 1946) may have important implications for nutrient cycling and food web dynamics. Results from multivariate autoregressive (MAR) modeling suggest that cladocerans increased strongly in response to temperature but not to algal biomass, and cladocerans depressed some algal resources without observable fertilization effects. Changes in Lake Baikal are particularly significant as an integrated signal of long-term regional warming, because this lake is expected to be among those most resistant to climate change due to its tremendous volume. These findings highlight the importance of accessible, long-term monitoring data for understanding ecosystem response to large-scale stressors such as climate change.  相似文献   

16.
Numerous studies revealed high diversity of T4-like bacteriophages in various environments, but so far, little is known about T4-like virus diversity in freshwater bodies, particularly in eutrophic lakes. The present study was aimed at elucidating molecular diversity of T4-like bacteriophages in eutrophic Lake Kotokel located near Lake Baikal by partial sequencing of the major capsid genes (g23) of T4-like bacteriophages. The majority of g23 fragments from Lake Kotokel were most similar to those from freshwater lakes and paddy fields. Despite the proximity and direct water connection between Lake Kotokel and Lake Baikal, g23 sequence assemblages from two lakes were different. UniFrac analysis showed that uncultured T4-like viruses from Lake Kotokel tended to cluster with those from the distant lake of the same trophic status. This fact suggested that the trophic conditions affected the formation of viral populations, particularly of T4-like viruses, in freshwater environments.  相似文献   

17.
N M Pronin 《Parazitologiia》1979,13(5):555-558
Acanthobdella peledina was first found in the basin of Lake Baikal on the fluvial form of the Balkal grayling Thymallus arcticus baicalensis and Coregonus lavaretus pidschian from the Upper Angara. Cystobranchus mammillatus, a parasite of burbot, is widely distributed in the tributaries of Baikal. The absence of these subarctic leeches from Baikal itself is explained by their rheophily.  相似文献   

18.
In situ phosphorus release rates in three contiguous shallow brackish lakes were calculated by considering the amount of water inflow, changes in salinity and phosphorus stock, and loading from phosphorus inflow based on monthly data. The annual amount of sedimental phosphorus relative to that of phosphorus inflow was different for each of the three water bodies: 16% for Lake Shinji, 3% for the Honjo area, and −8% for Lake Nakaumi, as estimated in a 10-year period from January 1993 to December 2002. During the warm season, the quantity of phosphorus released surpassed sedimentation in these three water bodies. The low annual sedimentation ratio in Lake Nakaumi is related to a large seawater backflow resulting in phosphorus removal, in addition to a stable stratified structure promoting phosphorus release from sediment due to oxygen depletion in the lower layer. In Lake Nakaumi, field data shows that if dissolved oxygen at the sediment surface falls below 2.54 mg L−1, phosphorus release from the sediment begins to be accelerated.  相似文献   

19.
Inland Water Biology - Results of a study of the water temperature and phytoplankton abundance in different regions of Lake Baikal according to 15 expeditions from 1994 to 2013 during late summer...  相似文献   

20.
Parasite communities of Baikal omul from Chivyrkuiskii Bay of Lake Baikal have been analyzed at levels of a host individual (infracommunity), a separate age group of a host (set of infracommunities), and a host population (component community). Significant positive correlations of parameters of species richness (number of parasite species, Margalef and Menhinick indices) with the age of Baikal omul were recorded only at the level of parasite infracommunities. The absence of linear positive correlations between the parameters of species richness and the age of Baikal omul at the level of sets of parasite infracommunities were revealed for the first time for fishes of Lake Baikal. The peculiarity of the dynamics of parasite communities of Baikal omul is determined by specific features of the host physiology and ecology, primarily by the age dynamics of the feeding spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号