首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactions of RuCl2(PR3)3 [PR3 = PPh3 or P(p-tolyl)3 with several monomeric phosphine complexes of rhodium(III), iridium(III) and platinum(IV) have been studied. The reactions with mer-MCl3(P′R3)3 (M = Rh, P′R3 = PEt2Ph, PMe2Ph, PMe2Ph; M = Ir, P′R3 = PBuPh2, PMePh2, PEt2Ph) involves a phosphine ligand transfer between metal atoms to afford novel dark coloured heterobimetallic complexes containing a triple chloro-bridge. The reactions of RuCl2(PR3)3 with PtCl4(P′R3)2 (P′R3 = PEt2Ph, PBu2Ph), however, do not give evidence for the formation of dinuclear complexes containing the (RuCl3Pt) unit, but a reduction of PtIV to PtII occurs with transfer of phosphine ligands between the two metals. The formulation of these complexes has been established by 31P NMR spectroscopy.  相似文献   

2.
Reactions of [Re2(CO)10] with Me3NO and diphosphines [Ph2P(CH2)nPPh2, n=1-6] yield mixtures of the monodentate-coordinated diphosphine complexes [Re2(CO)91-P-P)] (P-P=Ph2P(CH2)nPPh2, n=1-6) (yields 5-40%) and bridged dimers [{Re2(CO)9}2(μ-P-P)] (5-50%). These complexes were isolated as either equatorial or axial isomers, or a mixture of two isomers. Reactions of the monodentate complexes with Me3NO yield close-bridged complexes [Re2(CO)8(μ-P-P)] and phosphine oxide complexes [Re2(CO)9{P-P(O)}]. The structures of the close-bridged complexes 1 (n=3) and 2 (n=4), were determined by X-ray crystallography. The Re-Re bond in the close-bridged complex with the longest phosphine chain (n=6) is readily cleaved in CDCl3 to give the complex [{cis-ReCl(CO)4}2(μ-dpph)] (3) as the product, the structure of which was also determined by X-ray crystallography.  相似文献   

3.
In ethanol medium disodium tetrachloropalladate selectively activates the C8-H bond of naphthyl group present in 1-(2′-hydroxy-5′-methylphenylazo)naphthalene(H2L1) at room temperature and produces cyclometallate [PdL1(PPh3)] in presence of triphenylphosphine. Under similar reaction condition, the C(naphthyl)-H bond activation of 1-(2′-methoxy-5′-methylphenylazo)naphthalene (HL2) occurs at C2 and cyclopalladate [PdL2Cl] has been isolated as product. The labile nature of the Pd ←:O(R) bond of [PdL2Cl] in solution is established from the electronic and NMR spectra. Cyclopalladate [PdL2Cl] reacts with thallium(I) cyclopentadienide and yields [PdL2(Cp)], where both σ- and π-palladium(II)-carbon bonds exist. All the cyclopalladates have been isolated in pure form and characterized on the basis of their spectral data. The molecular structure of cyclopalladate [PdL1(PPh3)] has been determined by single crystal X-ray diffraction method. In [PdL1(PPh3)], the metal ion is bonded to C8 (peri-position of 1-azonaphthyl fagment), N1 of diazene function, O1 of phenolic group and P1 of triphenylphosphine. The tetra-coordination around palladium(II) is in a distorted square-planar geometry.  相似文献   

4.
《Inorganica chimica acta》1986,117(2):103-109
The hybrid, bidentate, diarylphosphino-alkoxide ligand PPh2CH2C(CF3)2O, L1, gives the Pd2+ bis- complex Pd(L1)2, from which the chloride-bridged dinuclear complex [(L1)Pd(μ-Cl)2Pd(L1)] is made by reaction with PdCl2(PhCN)2. Cleavage of the dinuclear complex with monodentate ligands L2 then gives Pd(L1)Cl(L2) (L2 =PPh3, PPh2Me, PPhMe2, PMe3, SMe2, or pyridine); NMR data show that PR3 is cis to the phosphine site in L1 in these complexes, but SMe2 or pyridine are probably trans.A complete crystal and molecular structural determination has been made for cis-Pd(L1)Cl(PPh2Me). Crystals are monoclinic, space group P21/c, a = 10.821(1), b = 14.600(1), c = 18.674(2) Å, β = 101.25(1)°, V = 2893 Å3, Z = 4. Least-squares refinement on F of 361 variables using 3977 observations converged at a conventional agreement factor R = 0.025. The complex is square-planar, with the two phosphines cis; the 5-membered chelate ring is in a dissymmetric envelope conformation. The PdP bonds differ in length, with that to the unidentate phosphine, 2.259(1) Å, being significantly longer than that to the phosphine on the chelating ligand, 2.231(1) Å.  相似文献   

5.
《Inorganica chimica acta》1988,145(2):289-298
Manganese(II) complexes of long chain phosphines, MnX2(phosphine)(THF) XCl, Br, I; phosphine=P(C12H25)3, P(C14H29)3, P(C16H33)3, PPh(C12H25)2, PPh(C14H29)2, PPh(C16H33)2; THF=tetrahydrofuran have been prepared and characterised. These complexes react reversibly with molecular oxygen both in the solid state and in THF and toluene solution forming 1:1 Mn:O2 adducts. These adducts are monomeric in toluene and THF and molecular weight measurements confirm that the THF ligand remains coordinated in toluene solution leading to the formation of MnX2(phosphine)(THF)(O2) species. All the O2-adducts are highly coloured and binding curves have been constructed and Ko2 values calculated. Based on these Ko2 values the affinity for dioxygen is in the order XCl>Br>I in toluene solution, with Hill coefficient, n, indicating cooperativity (1-1.5). In THF dioxygen binding does not appear to be cooperative.  相似文献   

6.
The synthesis of complexes of Li(I), K(I), Mg(II), Ca(II) and Ba(II) with guanosine in basic non aqueous solutions is described. The complexes were of two types: (1) complexes having the general formula, M(Guo)nXm·YH2O·ZC2H5OH, where M = Mg(II), Ca(II), Ba(II) and Li(I), n = 1,2,4, X = Cl?, Br?, NO3?, ClO4? and OH?, m = 1,2, Y = 0?6 and X = 0?2, and (2) complexes with the general formula, M(GuoH-1)(OH)n?1·YH2O, where M = K(I), Ca(Il) and Ba(II), GuoH-1 =Ionized guanosine at N1, n = 1,2 and Y = 1?3. The complexes are characterized by their proton nuclear magnetic resonance (1H NMR) and Fourier transform infrared (FT-IR) spectra. The FT-IR and 1H NMR data of the non ionized nucleoside complexes suggest that the metal binding is through the N7-site of guanine and that the anion (X) is hydrogen bonded to N1H and NH2 groups. In the N1-ionized guanosine complexes the metal binding is via the O6? of guanine. All the complexes formed exhibited a transition of the sugar conformation from C2-endo/anti in the free nucleoside to C3-endo/anti in the metal complexes.  相似文献   

7.
[1+1] macrocyclic and [1+2] macroacyclic compartmental ligands (H2L), containing one N2O2, N3O2, N2O3, N4O2 or O2N2O2 Schiff base site and one O2On (n=3, 4) crown-ether like site, have been prepared by self-condensation of the appropriate formyl- and amine precursors. The template procedure in the presence of sodium ion afforded Na2(L) or Na(HL) · nH2O. When reacted with the appropriate transition metal acetate hydrate, H2L form M(L) · nH2O, M(HL)(CH3COO) · nH2O, M(H2L)(X)2 · nH2O (M=Cu2+, Co2+, Ni2+; X=CH3COO, Cl) or Mn(L)(CH3COO) · nH2O according to the experimental conditions used. The same complexes have been prepared by condensation of the appropriate precursors in the presence of the desired metal ion. The Schiff bases H2L have been reduced by NaBH4 to the related polyamine derivatives H2R, which form, when reacted with the appropriate metal ions, M(H2R)(X)2 (M= Co2+, Ni2+; X=CH3COO, Cl), Cu(R) · nH2O and Mn(R)(CH3COO) · nH2O. The prepared ligands and related complexes have been characterized by IR, NMR and mass spectrometry. The [1+1] cyclic nature of the macrocyclic polyamine systems and the site occupancy of sodium ion have been ascertained, at least for the sodium (I) complex with the macrocyclic ligand containing one N3O2 Schiff base and one O2O3 crown-ether like coordination chamber, by an X-ray structural determination. In this complex the asymmetric unit consists of one cyclic molecule of the ligand coordinated to a sodium ion by the five oxygen atoms of the ligand. The coordination geometry of the sodium ion can be described as a pentagonal pyramid with the metal ion occupying the vertex. In the mononuclear complexes with H2L or H2R the transition metal ion invariantly occupies the Schiff base site; the sodium ion, on the contrary, prefers the crown-ether like site. Accordingly, the heterodinuclear complexes [MNa(L)(CH3COO)x] (M=Cu2+, Co2+, Ni2, x=1; M=Mn3+, x=2) have been synthesised by reacting the appropriate formyl and amine precursors in the presence of M(CH3COO)n · nH2O and NaOH in a 1:1:1:2 molar ratio. The reaction of the mononuclear transition metal complexes with Na(CH3COO) · nH2O gives rise to the same heterodinuclear complexes. Similarly [MNa(R)(CH3COO)x] have been prepared by reaction of the appropriate polyamine ligand H2R with the desired metal acetate hydrate and NaOH in 1:1:2 molar ratio.  相似文献   

8.
Phosphorus-31 and cadmium-113 NMR spectroscopy has been used to study the interaction between tertiary phosphines (P(c-C6H11)3 and PBu3) and Cd(O3SCF3)2, Cd(ClO4)2, Cd(CF3COO)2 and Cd(SCN)2 salts in solution. the NMR data imply the formation in solution of novel 1:1 adducts CdX2(phos) (X = O3SCF3, ClO4, CF3COO, phos = P(c-C6H11)3, PBu3) in which there is substantial interaction between the anions and cadmium. Data are also presented for mixed phosphine complexes CdX2[P(c-C6H11)3][PBu3] (X = O3SCF3, ClO4, NO3, CF3COO, CH3COO, Cl, Br, I, SCN). The two bond coupling constants 2J(P′P) of these mixed phosphine complexes decrease as the coordination ability of the anion increases and cover the narrow range from 95 Hz to 66 Hz.  相似文献   

9.
Uranyl(VI) and thorium(IV) complexes of the type UO2(NO3)2(L1)2, UO2(NO3)2(L2)2, UO2(CH3COO)2L1, UO2(CH3COO)2L2, Th(NO3)4(L1)2 and Th(NO3)4(L2)2 (L1 = (2-nitro)phenyl-bis-phenyl phosphine oxide, L2 = triferrocenylphosphine oxide) are reported, together with their physico-chemical properties.The crystal structure of UO2(NO3)2(L1)2 is also reported. The crystals are monoclinic, space group P21/n with a = 17.78(1), b = 13.88(1), c = 17.37(1) Å, β = 114.8(1)° for Z = 4. The uranium atom is 8-coordinated, the uranyl(VI) group being equatorially surrounded by an irregular hexagon of six oxygen atoms from two trans neutral ligands and two nitrato groups.  相似文献   

10.
Thermally initiated exothermic intramolecular redox reactions of [M(NO)2Cl2]n and M(NO)2CL2L2 (where M = Mo or W; L = PPh3AsPh3 or OPPh3) type complexes were observed at definite temperatures. In these reactions the coordinated NO oxidizes M or L and N2O or N2 containing gases are formed. Thermal analysis was found to be a reliable supplementary method to differentiate between phosphine and phosphine oxide substituted halo nitrosyl complexes.  相似文献   

11.
Silver carboxylates [Ag(O2CR): R=Me, tBu, 2,4,6-Me3C6H2], fluorocarboxlyates [Ag(O2CRf): Rf=C3F7, C6F13, C7F15] and their phosphine adducts [Ag(O2CR)·nPR3′: R=Me, tBu, 2,4,6-Me3C6H2, R′=Me, Ph, n=2; R=Me, R′=Me, n=3; Ag(O2CRf).2PPh3, Rf=C3F7, C6F13, C7F15] have been synthesised, characterised spectroscopically and used as precursors in the aerosol-assisted chemical vapour deposition of silver films. All the phosphine adducts produced films, though in general PMe3 adducts, proved more successful than PPh3 analogues. The fluoro-carboxylates and their PPh3 adducts all generated silver films, though the growth rate for the adducts was lower. All these latter films showed carbon impurities while fluorine was also evident in most cases. The X-ray structure of AgO2CC3F7·2PPh3 is also reported.  相似文献   

12.
The IR spectra of a number of dithiocarbamate (dtc) complexes (M(R2dtc)2, n = 2, M = Ni, Cu, Zn, Cd, Pb, Hg, Se, Te; n = 3, M = Cr, Fe, Co, As, Sb, Bi, R = Et, Prn, Pri, Bun, Bri, as well as the laser Raman spectra of a few colourless compounds (M(Et2dtc)2 M = Zn, Cd, Pb, Hg), have been recorded and discussed as to the validity of the Bonati-Ugo (BU) criterion for discerning the dtc bonding type from its νas(CS) band (ca. 1000 cm?1), By comparing these bands for dtc complexes containing different N-substituted ligands, their splittings can be proved to be due to interligand coupling of the CS ligand modes. Further comparison with X-ray diffraction data shows that the dtc ligands, irrespective of the host complex or the ligand bonding type, are at sites of C1 symmetry, thus ruling out the possibility to detect the ligand bonding type from the solid state vibrational spectra. New evidence is presented that the RN modes are present in the 1000 cm?1 region, thus making it unsuitable for the determination of the ligand bonding type.  相似文献   

13.
The new enantiopure complexes [LnL](NO3)3 · nH2O (Ln = Dy+3, Ho+3, Er+3, Lu+3) and [LnL]Cl3 · nH2O (Ln = Nd+3, Sm+3, Gd+3, Tb+3, Dy+3, Ho+3, Er+3, Tm+3, Lu+3) of the chiral macrocycle L derived from (1R,2R)-1,2-diaminocyclohexane and 2,6-diformylpyridine have been synthesised. The preference of macrocycle L for the heavier lanthanide(III) ions has been established on the basis of competition reaction. The complexes have been characterised by NMR spectroscopy and mass spectrometry. 1H NMR signals of deuterated water solutions of the Ce+3, Nd+3 and Eu+3 complexes have been assigned on the basis of the COSY and HMQC spectra, and for the remaining lanthanide complexes the signals were assigned on the basis of linewidths analysis. The paramagnetic shifts of the series of lanthanide complexes [LnL](NO3)3 · nH2O and [LnL]Cl3 · nH2O have been analysed using both crystal-field dependent and independent methods in order to separate contact and dipolar contributions and establish isostructurality along the series of lanthanide complexes in solution. The data obtained for nitrate derivatives in organic solvent indicate rather irregular deviations from the plots based on those methods, while the plots obtained for water solutions show the characteristic brake in the middle of the lanthanide series, that is interpreted as a result of change of the number of axially coordinated water molecules. The apparent inconsistencies of results obtained on the basis of crystal-field independent method are discussed.  相似文献   

14.
A series of hexa-coordinated ruthenium(II) complexes of the type [Ru(CO)(B)L n ] (n = 1–4; B = PPh3, AsPh3 or Py) have been synthesized by reacting dibasic quadridentate Schiff base ligands H2L n (n = 1–4) with starting complexes [RuHCl(CO)(EPh3)2(B)] (E = P or As; B = PPh3, AsPh3 or Py). The synthesized complexes were characterized using elemental and various spectral studies including UV–Vis, FT-IR, NMR (1H, 13C and 31P) and mass spectroscopy. An octahedral geometry was tentatively proposed for all the complexes based on the spectral data obtained. The experiments on antioxidant activity showed that the ruthenium(II) S-methylisothiosemicarbazone Schiff base complexes exhibited good scavenging activity against various free radicals (DPPH, OH and NO). The in vitro cytotoxicity of these complexes has been evaluated by MTT assay. The results demonstrate that the complexes have good anticancer activities against selected cancer cell line, human breast cancer cell line (MCF-7) and human skin carcinoma cell line (A431). The DNA cleavage studies showed that the complexes have better cleavage of pBR 322 DNA.  相似文献   

15.
A series of new imidophosphanes and phosphine oxides containing 3,3,4,4-tetramethylsuccinimidyl group were synthesized and characterized by 1H, 13C{1H} and 31P NMR spectroscopy, IR and MS. PhmPCln (m = 3 − n, n = 3, 2, 1) reacted with 3,3,4,4-tetramethylsuccinimide (TH) and potassium 3,3,4,4-tetramethylsuccinimidate 1 to give corresponding PhmPTn. Molecular structures of products were established by single-crystal X-ray diffraction experiments. Attempts to prepare new imidophosphoranes by reactions of 1 with PhmPCln (m = 5 − n, n = 4, 3, 2) resulted in phosphine oxides. In these reactions the phosphoryl group was formed and we characterized a by-product of this type of reaction.  相似文献   

16.
The bulky phosphine ligands di-tert-butyl(1-naphthyl)phosphine (1) or di-tert-butyl(N-indolyl)phosphine (2) react at room temperature with [(μ-SMe2)PtMe2]2. Coordination of the phosphine and C-H bond activation at an sp2 carbon of the ligand with the release of methane takes place to form the PC cyclometalated products [(PC)PtMe(SMe2)] (3 or 4, respectively). The cyclometalated complexes 3 and 4 have both been characterized by X-ray crystallography. Complexes 3 and 4 were each observed to undergo intermolecular activation of arene C-H bonds. Upon thermolysis in benzene, complexes 3 and 4 react to eliminate methane and yield isolable platinum(II)-phenyl complexes.  相似文献   

17.
Copper(I) complexes have been synthesized from the reaction of CuCl, monodentate tertiary phosphines PR3 (PR3 = P(C6H5)3; P(C6H5)2(4-C6H4COOH); P(C6H5)2(2-C6H4COOH); PTA, 1,3,5-triaza-7-phosphaadamantane; P(CH2OH)3, tris(hydroxymethyl)phosphine) and lithium bis(3,5-dimethylpyrazolyl)dithioacetate, Li[LCS2]. Mono-nuclear complexes of the type [LCS2]Cu[PR3] have been obtained and characterized by elemental analyses, FT-IR, ESI-MS and multinuclear (1H, 13C and 31P) NMR spectral data; in these complexes the ligand behaves as a κ3-N,N,S scorpionate system. One exception to this stoichiometry was observed in the complex [LCS2]Cu[P(CH2OH)3]2, where two phosphine co-ligands are coordinated to the copper(I) centre. The solid-state X-ray crystal structure of [LCS2]Cu[P(C6H5)3] has been determined. The [LCS2]Cu[P(C6H5)3] complex has a pseudo tetrahedral copper site where the bis(3,5-dimethylpyrazolyl)dithioacetate ligand acts as a κ3-N,N,S donor.  相似文献   

18.
A spectroelectrochemical study of [Ru2X9]n, X=Cl, Br; n=1, 2, 3, 4 has been undertaken. Stable solutions of n=4, 2, 1 can be formed by electrolysis at low temperatures. Analysis of the Vis-NIR spectra of the complexes indicate that the RuII---RIII dimers (n=4) have delocalised mixed valence and that the RuIII---RIII (n=3) dimers have a strong Ru---Ru bond. The more oxidised materials do not form a Ru---Ru bond; the spectroscopic data indicates the RuIII---RIV dimers have localised valency.  相似文献   

19.
Several clusters complexes of composition [Pt42-CO)5L4] have been synthesized and characterized, using 31P and 195Pt NMR. L = PEt3, PMe2Ph, PMePh2, PEt2But. The molecular structure of a new monoclinic modification of the PMe2Ph derivative has been determined: space group P21/n with a = 19.698(4), b = 10.9440(20), and c = 21.360(6) Å, β = 112.432(18)°, Z = 4. Using 4751 reflections measured at 290 ± 1 K on a four-circle diffractometer the structure has been refined to R = 0.0846. The molecule has no imposed symmetry, but the central Pt4(CO)5P4 core has the approximate C2v architecture established for the previously known orthorhombic modification. The Pt4 unit is thus a highly distorted, edge-opened (3.3347 Å) tetrahedron, with five edge-bridging carbonyl and four terminal phosphine ligands. In contrast to the crystallographic results 31P and 195Pt NMR spectra reveal equivalent 31P and 195Pt spins, which can be interpreted in terms of a tetrahedral arrangement of platinum atoms. It is suggested that this equivalence arises from time-averaging of all possible isomeric edge-opened tetrahedra.  相似文献   

20.
Thiourea, PhNHC(S)NHP(O)(OPri)2 (LH) chelates of CoII, NiII, and PdII ions have been obtained and investigated by single-crystal X-ray diffraction, UV, IR, NMR spectroscopy, and EI mass-spectrometry. The unusual 1,3-N,S-coordination via sulfur and NP(O) nitrogen atoms has been found in the trans-square-planar NiL2 and PdL2 complexes, whereas the 1,5-O,S-coordination is realized in the tetrahedral CoL2 complex. DFT calculations have revealed significant stabilization of the 1,3-N,S-structures due to stronger crystal field and the NH-OP hydrogen bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号