共查询到20条相似文献,搜索用时 15 毫秒
1.
A Ca2+‐binding protein with numerous roles and uses: parvalbumin in molecular biology and physiology
Syed Hasan Arif 《BioEssays : news and reviews in molecular, cellular and developmental biology》2009,31(4):410-421
Parvalbumins (PVs) are acidic, intracellular Ca2+‐binding proteins of low molecular weight. They are associated with several Ca2+‐mediated cellular activities and physiological processes. It has been suggested that PV might function as a “Ca2+ shuttle” transporting Ca2+ from troponin‐C (TnC) to the sarcoplasmic reticulum (SR) Ca2+ pump during muscle relaxation. Thus, PV may contribute to the performance of rapid, phasic movements by accelerating the contraction–relaxation cycle of fast‐twitch muscle fibers. Interestingly, PVs promote the generation of power stroke in fish by speeding up the rate of relaxation and thus provide impetus to attain maximal sustainable speeds. However, immunological monitoring of diverse tissues demonstrated that PVs are also present in non‐muscle cells. The axoplasmic transport and various intracellular secretory mechanisms including the endocrine secretions seem to be controlled by the Ca2+ regulation machinery. Any defect in the Ca2+ handling apparatus may cause several clinical problems; for instance, PV deficiency alters the neuronal activity, a key mechanism leading to epileptic seizures. Moreover, atypical relaxation of the heart results in diastolic dysfunction, which is a major cause of heart failure predominantly among the aged people. PV may offer a unique potential to correct defective relaxation in energetically compromised failing hearts through PV gene transfer. Consequently, PV gene transfer may present a new therapeutic approach to correct cellular disturbances in Ca2+ signaling pathways of diseased organs. Hence, PVs appear to be amazingly useful candidate proteins regulating a variety of cellular functions through action on Ca2+ flux management. 相似文献
2.
Michael T. Henzl Arthur G. Sirianni Wei G. Wycoff Anmin Tan John J. Tanner 《Proteins》2013,81(2):300-315
Polcalcins are small EF‐hand proteins believed to assist in regulating pollen‐tube growth. Phl p 7, from timothy grass (Phleum pratense), crystallizes as a domain‐swapped dimer at low pH. This study describes the solution structures of the recombinant protein in buffered saline at pH 6.0, containing either 5.0 mM EDTA, 5.0 mM Mg2+, or 100 μM Ca2+. Phl p 7 is monomeric in all three ligation states. In the apo‐form, both EF‐hand motifs reside in the closed conformation, with roughly antiparallel N‐ and C‐terminal helical segments. In 5.0 mM Mg2+, the divalent ion is bound by EF‐hand 2, perturbing interhelical angles and imposing more regular helical structure. The structure of Ca2+‐bound Phl p 7 resembles that previously reported for Bet v 4—likewise exposing apolar surface to the solvent. Occluded in the apo‐ and Mg2+‐bound forms, this surface presumably provides the docking site for Phl p 7 targets. Unlike Bet v 4, EF‐hand 2 in Phl p 7 includes five potential anionic ligands, due to replacement of the consensus serine residue at –x (residue 55 in Phl p 7) with aspartate. In the Phl p 7 crystal structure, D55 functions as a helix cap for helix D. In solution, however, D55 apparently serves as a ligand to the bound Ca2+. When Mg2+ resides in site 2, the D55 carboxylate withdraws to a distance consistent with a role as an outer‐sphere ligand. 15N relaxation data, collected at 600 MHz, indicate that backbone mobility is limited in all three ligation states. Proteins 2013. © 2012 Wiley Periodicals, Inc. 相似文献
3.
Hidehiko Hirakawa Suguru Ishikawa Teruyuki Nagamune 《Biotechnology and bioengineering》2012,109(12):2955-2961
The catalytic activity of Staphylococcus aureus sortase A (SaSrtA) is dependent on Ca2+, because binding of Ca2+ to Glu residues distal to the active site stabilizes the substrate binding site. To obtain Ca2+‐independent SaSrtA, we substituted two Glu residues in the Ca2+‐binding pocket (Glu105 and Glu108). Although single mutations decreased SaSrtA activity, mutations of both Glu105 and Glu108 resulted in Ca2+‐independent activity. Kinetic analysis suggested that the double mutations affect the substrate binding site, without affecting substrate specificity. This approach will allow us to develop SaSrtA variants suitable for various applications, including in vivo site‐specific protein modification and labeling. Biotechnol. Bioeng. 2012; 109: 2955–2961. © 2012 Wiley Periodicals, Inc. 相似文献
4.
Genetically identical cells in a uniform external environment can exhibit different phenotypes, which are often masked by conventional measurements that average over cell populations. Although most studies on this topic have used microorganisms, differentiated mammalian cells have rarely been explored. Here, we report that only approximately 40% of clonal human embryonic kidney 293 cells respond with an intracellular Ca2+ increase when ryanodine receptor Ca2+ release channels in the endoplasmic reticulum are maximally activated by caffeine. On the other hand, the expression levels of ryanodine receptor showed a unimodal distribution. We showed that the difference in the caffeine sensitivity depends on a critical balance between Ca2+ release and Ca2+ uptake activities, which is amplified by the regenerative nature of the Ca2+ release mechanism. Furthermore, individual cells switched between the caffeine‐sensitive and caffeine‐insensitive states with an average transition time of approximately 65 h, suggestive of temporal fluctuation in endogenous protein expression levels associated with caffeine response. These results suggest the significance of regenerative mechanisms that amplify protein expression noise and induce cell‐to‐cell phenotypic variation in mammalian cells. 相似文献
5.
Bao‐Dong Tang Xin Xia Xiao‐Fei Lv Bei‐Xin Yu Jia‐Ni Yuan Xiao‐Yi Mai Jin‐Yan Shang Jia‐Guo Zhou Si‐Jia Liang Rui‐Ping Pang 《Journal of cellular and molecular medicine》2017,21(5):904-915
Increasing evidence supports that activation of store‐operated Ca2+ entry (SOCE) is implicated in the chemoresistance of cancer cells subjected to chemotherapy. However, the molecular mechanisms underlying chemoresistance are not well understood. In this study, we aim to investigate whether 5‐FU induces hepatocarcinoma cell death through regulating Ca2+‐dependent autophagy. [Ca2+]i was measured using fura2/AM dye. Protein expression was determined by Western blotting and immunohistochemistry. We found that 5‐fluorouracil (5‐FU) induced autophagic cell death in HepG2 hepatocarcinoma cells by inhibiting PI3K/AKT/mTOR pathway. Orai1 expression was obviously elevated in hepatocarcinoma tissues. 5‐FU treatment decreased SOCE and Orai1 expressions, but had no effects on Stim1 and TRPC1 expressions. Knockdown of Orai1 or pharmacological inhibition of SOCE enhanced 5‐FU‐induced inhibition of PI3K/AKT/mTOR pathway and potentiated 5‐FU‐activated autophagic cell death. On the contrary, ectopic overexpression of Orai1 antagonizes 5‐FU‐induced autophagy and cell death. Our findings provide convincing evidence to show that Orai1 expression is increased in hepatocarcinoma tissues. 5‐FU can induce autophagic cell death in HepG2 hepatocarcinoma cells through inhibition of SOCE via decreasing Orai1 expression. These findings suggest that Orai1 expression is a predictor of 5‐FU sensitivity for hepatocarcinoma treatment and blockade of Orai1‐mediated Ca2+ entry may be a promising strategy to sensitize hepatocarcinoma cells to 5‐FU treatment. 相似文献
6.
7.
Qi Li Meng Qin Qi Tan Tengteng Li Zehui Gu Peng Huang Liqun Ren 《Journal of cellular and molecular medicine》2020,24(3):2260-2271
Pirarubicin (THP), an anthracycline anticancer drug, is a first‐line therapy for various solid tumours and haematologic malignancies. However, THP can cause dose‐dependent cumulative cardiac damage, which limits its therapeutic window. The mechanisms underlying THP cardiotoxicity are not fully understood. We previously showed that MiR‐129‐1‐3p, a potential biomarker of cardiovascular disease, was down‐regulated in a rat model of THP‐induced cardiac injury. In this study, we used Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) pathway enrichment analyses to determine the pathways affected by miR‐129‐1‐3p expression. The results linked miR‐129‐1‐3p to the Ca2+ signalling pathway. TargetScan database screening identified a tentative miR‐129‐1‐3p‐binding site at the 3′‐UTR of GRIN2D, a subunit of the N‐methyl‐D‐aspartate receptor calcium channel. A luciferase reporter assay confirmed that miR‐129‐1‐3p directly regulates GRIN2D. In H9C2 (rat) and HL‐1 (mouse) cardiomyocytes, THP caused oxidative stress, calcium overload and apoptotic cell death. These THP‐induced changes were ameliorated by miR‐129‐1‐3p overexpression, but exacerbated by miR‐129‐1‐3p knock‐down. In addition, miR‐129‐1‐3p overexpression in cardiomyocytes prevented THP‐induced changes in the expression of proteins that are either key components of Ca2+ signalling or important regulators of intracellular calcium trafficking/balance in cardiomyocytes including GRIN2D, CALM1, CaMKⅡδ, RyR2‐pS2814, SERCA2a and NCX1. Together, these bioinformatics and cell‐based experiments indicate that miR‐129‐1‐3p protects against THP‐induced cardiomyocyte apoptosis by down‐regulating the GRIN2D‐mediated Ca2+ pathway. Our results reveal a novel mechanism underlying the pathogenesis of THP‐induced cardiotoxicity. The miR‐129‐1‐3p/Ca2+ signalling pathway could serve as a target for the development of new cardioprotective agents to control THP‐induced cardiotoxicity. 相似文献
8.
Ca2+‐regulated and diurnal rhythm‐regulated Na+/Ca2+ exchanger AtNCL affects flowering time and auxin signalling in Arabidopsis 下载免费PDF全文
Naomi Gonzales Yingqing Guo Honghong Hu Sunghun Park Jian Zhao 《Plant, cell & environment》2016,39(2):377-392
Calcium (Ca2+) is vital for plant growth, development, hormone response and adaptation to environmental stresses, yet the mechanisms regulating plant cytosolic Ca2+ homeostasis are not fully understood. Here, we characterize an Arabidopsis Ca2+‐regulated Na+/Ca2+ exchanger AtNCL that regulates Ca2+ and multiple physiological processes. AtNCL was localized to the tonoplast in yeast and plant cells. AtNCL appeared to mediate sodium (Na+) vacuolar sequestration and meanwhile Ca2+ release. The EF‐hand domains within AtNCL regulated Ca2+ binding and transport of Ca2+ and Na+. Plants with diminished AtNCL expression were more tolerant to high CaCl2 but more sensitive to both NaCl and auxin; heightened expression of AtNCL rendered plants more sensitive to CaCl2 but tolerant to NaCl. AtNCL expression appeared to be regulated by the diurnal rhythm and suppressed by auxin. DR5::GUS expression and root responses to auxin were altered in AtNCL mutants. The auxin‐induced suppression of AtNCL was attenuated in SLR/IAA14 and ARF6/8 mutants. The mutants with altered AtNCL expression also altered flowering time and FT and CO expression; FT may mediate AtNCL‐regulated flowering time change. Therefore, AtNCL is a vacuolar Ca2+‐regulated Na+/Ca2+ exchanger that regulates auxin responses and flowering time. 相似文献
9.
Johannes D Clausen Maike Bublitz Bertrand Arnou Cédric Montigny Christine Jaxel Jesper Vuust Møller Poul Nissen Jens Peter Andersen Marc le Maire 《The EMBO journal》2013,32(24):3231-3243
The sarco(endo)plasmic reticulum Ca2+‐ATPase (SERCA) couples ATP hydrolysis to transport of Ca2+. This directed energy transfer requires cross‐talk between the two Ca2+ sites and the phosphorylation site over 50 Å distance. We have addressed the mechano‐structural basis for this intramolecular signal by analysing the structure and the functional properties of SERCA mutant E309Q. Glu309 contributes to Ca2+ coordination at site II, and a consensus has been that E309Q only binds Ca2+ at site I. The crystal structure of E309Q in the presence of Ca2+ and an ATP analogue, however, reveals two occupied Ca2+ sites of a non‐catalytic Ca2E1 state. Ca2+ is bound with micromolar affinity by both Ca2+ sites in E309Q, but without cooperativity. The Ca2+‐bound mutant does phosphorylate from ATP, but at a very low maximal rate. Phosphorylation depends on the correct positioning of the A‐domain, requiring a shift of transmembrane segment M1 into an ‘up and kinked position’. This transition is impaired in the E309Q mutant, most likely due to a lack of charge neutralization and altered hydrogen binding capacities at Ca2+ site II. 相似文献
10.
Recoverin belongs to the superfamily of EF-hand Ca2+-binding proteins and operates as a Ca2+-sensor in vertebrate photoreceptor cells, where it regulates the activity of rhodopsin kinase GRK1 in a Ca2+-dependent manner. Ca2+-dependent conformational changes in recoverin are allosterically controlled by the covalently attached myristoyl group. The amino acid sequence of recoverin harbors a unique cysteine at position 38. The cysteine can be modified by the fluorescent dye Alexa647 using a maleimide-thiol coupling step. Introduction of Alexa647 into recoverin did not disturb the biological function of recoverin, as it can regulate rhodopsin kinase activity like unlabeled recoverin. Performance of the Ca2+-myristoyl switch of labeled recoverin was monitored by Ca2+-dependent association with immobilized lipids using surface plasmon resonance spectroscopy. When the Ca2+-concentration was varied, labeled myristoylated recoverin showed a 37%-change in fluorescence emission and a 34%-change in excitation intensity, emission and excitation maxima shifted by 6 and 18 nm, respectively. In contrast, labeled nonmyristoylated recoverin exhibited only minimal changes. Time-resolved fluorescence measurements showed biexponentiell fluorescence decay, in which the slower time constant of 2 ns was specifically influenced by Ca2+-induced conformational changes. A similar influence on the slower time constant was observed with the recoverin mutant RecE85Q that has a disabled EF-hand 2, but no such influence was detected with the mutant RecE121Q (EF-hand 3 is nonfunctional) that contains the myristoyl group in a clamped position. We conclude from our results that Alexa647 bound to cysteine 38 can monitor the conformational transition in recoverin that is under control of the myristoyl group. 相似文献
11.
José Nicolau Douglas Nesadal De Souza Alyne Simões 《Cell biochemistry and function》2009,27(3):128-134
Diabetes has been implicated in the dryness of the mouth, loss of taste sensation, sialosis, and other disorders of the oral cavity, by impairment of the salivary glands. The aim of the present study was to examine the plasma membrane, microsomal, and homogenate Ca2+‐ATPase activity in the rat submandibular and parotid salivary glands of streptozotocin‐induced diabetes. We have also examined the influence of the acidosis state on this parameter. Diabetes was induced by an intraperitoneal injection of streptozotocin and acidosis was induced by daily injection of NH4Cl. At 15 and 30 days after diabetes induction, the animals were euthanized and the submandibular and parotid salivary glands were removed and analyzed. Ca2+‐ATPase (total, independent, and dependent) was determined in the homogenate, microsomal, and plasma membranes of the salivary glands of diabetic and control rats. Calcium concentration was also determined in the glands and showed to be higher in the diabetic animals. Ca2+‐ATPase activity was found to be reduced in all cell fractions studied in the diabetic animals compared with control. Similar results were obtained for the submandibular salivary glands of acidotic animals; however in the parotid salivary glands it was found an increase in the enzyme activity. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
12.
Hierarchical domain‐motion analysis of conformational changes in sarcoplasmic reticulum Ca2+‐ATPase 下载免费PDF全文
Sarco(endo)plasmic reticulum Ca2+‐ATPase transports two Ca2+ per ATP‐hydrolyzed across biological membranes against a large concentration gradient by undergoing large conformational changes. Structural studies with X‐ray crystallography revealed functional roles of coupled motions between the cytoplasmic domains and the transmembrane helices in individual reaction steps. Here, we employed “Motion Tree (MT),” a tree diagram that describes a conformational change between two structures, and applied it to representative Ca2+‐ATPase structures. MT provides information of coupled rigid‐body motions of the ATPase in individual reaction steps. Fourteen rigid structural units, “common rigid domains (CRDs)” are identified from seven MTs throughout the whole enzymatic reaction cycle. CRDs likely act as not only the structural units, but also the functional units. Some of the functional importance has been newly revealed by the analysis. Stability of each CRD is examined on the morphing trajectories that cover seven conformational transitions. We confirmed that the large conformational changes are realized by the motions only in the flexible regions that connect CRDs. The Ca2+‐ATPase efficiently utilizes its intrinsic flexibility and rigidity to response different switches like ligand binding/dissociation or ATP hydrolysis. The analysis detects functional motions without extensive biological knowledge of experts, suggesting its general applicability to domain movements in other membrane proteins to deepen the understanding of protein structure and function. Proteins 2015; 83:746–756. © 2015 Wiley Periodicals, Inc. 相似文献
13.
Sergei E. Permyakov Tatyana I. Khokhlova Vladimir N. Uversky Eugene A. Permyakov 《Proteins》2010,78(12):2609-2624
The triggering of Ca2+ signaling pathways relies on Ca2+/Mg2+ specificity of proteins mediating these pathways. Two homologous milk Ca2+‐binding proteins, bovine α‐lactalbumin (bLA) and equine lysozyme (EQL), were analyzed using the simplest “four‐state” scheme of metal‐ and temperature‐induced structural changes in a protein. The association of Ca2+/Mg2+ by native proteins is entropy‐driven. Both proteins exhibit strong temperature dependences of apparent affinities to Ca2+ and Mg2+, due to low thermal stabilities of their apo‐forms and relatively high unfavorable enthalpies of Mg2+ association. The ratios of their apparent affinities to Ca2+ and Mg2+, being unusually high at low temperatures (5.3–6.5 orders of magnitude), reach the values inherent to classical EF‐hand motifs at physiological temperatures. The comparison of phase diagrams predicted within the model of competitive Ca2+ and Mg2+ binding with experimental data strongly suggests that the association of Ca2+ and Mg2+ ions with bLA is a competitive process, whereas the primary Mg2+ site of EQL is different from its Ca2+‐binding site. The later conclusion is corroborated by qualitatively different molar ellipticity changes in near‐UV region accompanying Mg2+ and Ca2+ association. The Ca2+/Mg2+ selectivity of Mg2+‐site of EQL is below an order of magnitude. EQL exhibits a distinct Mg2+‐specific site, probably arising as an adaptation to the extracellular environment. Proteins 2010. © 2010 Wiley‐Liss, Inc. 相似文献
14.
Juyou Wu Zhonglin Shang Jun Wu Xueting Jiang Panagiotis N. Moschou Wending Sun Kalliopi A. Roubelakis‐Angelakis Shaoling Zhang 《The Plant journal : for cell and molecular biology》2010,63(6):1042-1053
Spermidine (Spd) has been correlated with various physiological and developmental processes in plants, including pollen tube growth. In this work, we show that Spd induces an increase in the cytosolic Ca2+ concentration that accompanies pollen tube growth. Using the whole‐cell patch clamp and outside‐out single‐channel patch clamp configurations, we show that exogenous Spd induces a hyperpolarization‐activated Ca2+ current: the addition of Spd cannot induce the channel open probability increase in excised outside‐out patches, indicating that the effect of Spd in the induction of Ca2+ currents is exerted via a second messenger. This messenger is hydrogen peroxide (H2O2), and is generated during Spd oxidation, a reaction mediated by polyamine oxidase (PAO). These reactive oxygen species trigger the opening of the hyperpolarization‐activated Ca2+‐permeable channels in pollen. To provide further evidence that PAO is in fact responsible for the effect of Spd on the Ca2+‐permeable channels, two Arabidopsis mutants lacking expression of the peroxisomal‐encoding AtPAO3 gene, were isolated and characterized. Pollen from these mutants was unable to induce the opening of the Ca2+‐permeable channels in the presence of Spd, resulting in reduced pollen tube growth and seed number. However, a high Spd concentration triggers a Ca2+ influx beyond the optimal, which has a deleterious effect. These findings strongly suggest that the Spd‐derived H2O2 signals Ca2+ influx, thereby regulating pollen tube growth. 相似文献
15.
Ligand binding to transport sites constitutes the initial step in the catalytic cycle of transport ATPases. Here, we consider the well characterized Ca2+ ATPase of sarcoplasmic reticulum (SERCA) and describe a series of Ca2+ binding isotherms obtained by equilibrium measurements in the presence of various H+ and Mg2+ concentrations. We subject the isotherms to statistical mechanics analysis, using a model based on a minimal number of mechanistic steps. The analysis allows satisfactory fits and yields information on occupancy of the specific Ca2+ sites under various conditions. It also provides a fundamental method for analysis of binding specificity to transport sites under equilibrium conditions that lead to tightly coupled catalytic activation. 相似文献
16.
Birds express two β-parvalbumin isoforms, parvalbumin 3 and avian thymic hormone (ATH). Parvalbumin 3 from chicken (CPV3) is identical to rat β-parvalbumin (β-PV) at 75 of 108 residues. CPV3 displays intermediate Ca(2+) affinity--higher than that of rat β-parvalbumin, but lower than that of ATH. As in rat β-PV, the attenuation of affinity is associated primarily with the CD site (residues 41-70), rather than the EF site (residues 80-108). Structural data for rat α- and β-parvalbumins suggest that divalent ion affinity is correlated with the similarity of the unliganded and Ca(2+)-bound conformations. We herein present a comparison of the solution structures of Ca(2+)-free and Ca(2+)-bound CPV3. Although the structures are generally similar, the conformations of residues 47 to 50 differ markedly in the two protein forms. These residues are located in the C helix, proximal to the CD binding loop. In response to Ca(2+) removal, F47 experiences much greater solvent accessibility. The side-chain of R48 assumes a position between the C and D helices, adjacent to R69. Significantly, I49 adopts an interior position in the unliganded protein that allows association with the side-chain of L50. Concomitantly, the realignment of F66 and F70 facilitates their interaction with I49 and reduces their contact with residues in the N-terminal AB domain. This reorganization of the hydrophobic core, although less profound, is nevertheless reminiscent of that observed in rat β-PV. The results lend further support to the idea that Ca(2+) affinity correlates with the structural similarity of the apo- and bound parvalbumin conformations. 相似文献
17.
18.
Shoi Shi Hiroki R. Ueda 《BioEssays : news and reviews in molecular, cellular and developmental biology》2018,40(1)
Although we are beginning to understand the neuronal and biochemical nature of sleep regulation, questions remain about how sleep is homeostatically regulated. Beyond its importance in basic physiology, understanding sleep may also shed light on psychiatric and neurodevelopmental disorders. Recent genetic studies in mammals revealed several non‐secretory proteins that determine sleep duration. Interestingly, genes identified in these studies are closely related to psychiatric and neurodevelopmental disorders, suggesting that the sleep‐wake cycle shares some common mechanisms with these disorders. Here we review recent sleep studies, including reverse and forward genetic studies, from the perspectives of sleep duration and homeostasis. We then introduce a recent hypothesis for mammalian sleep in which the fast and slow Ca2+‐dependent hyperpolarization pathways are pivotal in generating the SWS firing pattern and regulating sleep homeostasis, respectively. Finally, we propose that these intracellular pathways are potential therapeutic targets for achieving depolarization/hyperpolarization (D/H) balance in psychiatric and neurodevelopmental disorders. 相似文献
19.
Aaron P. Yamniuk Kathryn L. Anderson Marie E. Fraser Hans J. Vogel 《Protein science : a publication of the Protein Society》2009,18(5):1128-1134
Recent X-ray crystal structures and solution NMR spectroscopy data for calcium- and integrin-binding protein 1 (CIB1) have all revealed a common EF-hand domain structure for the protein. However, the orientation of the two protein domains, the oligomerization state, and the conformations of the N- and C-terminal extensions differ among the structures. In this study, we examine whether the binding of glutathione or auxiliary Ca2+ ions as observed in the crystal structures, occur in solution, and whether these interactions can influence the structure or dimerization of CIB1. In addition, we test the potential phosphatase activity of CIB1, which was hypothesized based on the glutathione binding site geometry observed in one of the crystal structures of the protein. Biophysical and biochemical experiments failed to detect glutathione binding, protein dimerization, or phosphatase activity for CIB1 under several solution conditions. However, our data identify low affinity (Kd, 10−2M) Ca2+ binding events that influence the structures of the N- and C-terminal extensions of CIB1 under high (300 mM) Ca2+ crystallization conditions. In addition to providing a rationale for differences amongst the various solution and crystal structures of CIB1, our results show that the impact of low affinity Ca2+ binding events should be considered when analyzing and interpreting protein crystallographic structures determined in the presence of very high Ca2+ concentrations. 相似文献