首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
K Gekko  H Noguchi 《Biopolymers》1971,10(9):1513-1524
The number average molecular weight, Mn, of low molecular weight dextran was determined through endgroup analysis, and the intrinsic, viscosities of these materials in aqueous solution were determined at 25°C. The ultrasonic velocities in their aqueous solutions were also measured at 25 and 45°C. As concerns the molecular weight dependence of the intrinsic viscosity, partial specific compressibility of solute and the hound water around the solute, the following results were obtained. (1) log [η]-log Mn and [η]/Mn0.5 – Mn0.5 plots were in accord with the Mark-Houwink and Stockmayer-Fix-man equations respectively for Mn > 2, 000, but these plots deviated from the equations for Mn < 2, 000. (2)The partial specific compressibility, β 1°, of dextran is expressed by following equation for Mn < 2,000: β 1° = 10?12 × (13.6 log Mn - 51.7) (cm2/dyne). In contrast, it, becomes the constant value, -- 7.3 × 10?12 cm2/dyne, for Mn > 2,000. (3) The amount of bound water of dextran calculated from the sound velocity measurement lakes constant value of 0.17 ml g for Mn > 2, 000, but the amount of hydration increase with decreasing molecular weight for Mn < 2,000. From these results, a dextran molecule in aqueous solution is expected to change its conformation from random coiling to uncoiling stretched form at the molecular weight of around 2, 000 or about 12 glucose units.  相似文献   

2.
Instrumentation and associated techniques are described for the measurement of flow birefringence and extinction angles of high molecular weight polymer systems at extremely low velocity gradients. Precision of less than one degree in the extinction angles is obtained for birefringence smaller than 10?11, based upon studies of very dilute high molecular weight DNA solutions over a range of velocity gradients from 0.1 to 3 sec?1. Extinction angles approaching 44° are also observed with at least this degree of reliability for these systems. A relatively simple method of data reduction is outlined which permits explicit correction for solvent effects and for residual instrument birefringence and background; only the latter are found to be necessary at the shear rates reported in this communication. Applicability of the techniques to other macromolecules of biological interest is discussed.  相似文献   

3.
According to the proposed mechanism for the enzymatic formation of dextran, branches of different length are formed in a reaction between a so-called acceptor dextran molecule and an active reaction complex; propagation of the dextran chain occurs by an insertion-type polymer growth. To investigate this branching reaction, radioactive labeled acceptor dextran of relatively low molecular weight was added to a dextran synthesizing system and the native high molecular weight dextran separated by a fractionation method. From the specific radioactivity of the isolated native dextran, and assuming a molecular weight of 2.5 × 105, the average number of acceptor molecules incorporated into native dextran is calculated to be about unity, as predicted by the proposed mechanism. Analogous results have been obtained in the reaction of two different dextran sucrases from Leuconostoc mesenteroides B512F and B1307, respectively.  相似文献   

4.
By measurement of the conductance of various electrolytes in solutions of D-glucitol, D-glucose, glycerol, D-mannitol, and sucrose, the hydration of the polyhydroxy compounds and their association with electrolytes have been examined. The results have been analyzed in the light of conductance equations; it was found that D-glucose and sucrose associate with electrolytes, glycerol and D-mannitol are practically inert, and D-glucitol is only rarely bound. The association constants are of the order of 10?1 to 10?2. The results indicate that anions guide the process, with a free-energy change of 1.5–3.0 kcal.mole-1, the order of the energy of hydrogen bonding. In the analysis of conductance data, neglect of association may introduce hydration numbers many times greater than are usual.  相似文献   

5.
Flow dichroism of DNA: a new apparatus and further studies   总被引:3,自引:0,他引:3  
P R Callis 《Biopolymers》1969,7(3):335-352
A new apparatus for the study of flow dichroism of macromolecules is described. The flow is down a long, narrow channel and an unpolarized light beam propagates along the flow direction. For a molecule such as DNA, in which the transition moments of the chromophores are perpendicular to the axis of orientation, an increase of absorbance is observed during flow. The apparatus is best suited for macromolecules which are readily orientable or at high shear gradients so that the extinction angle is close to 0°. The apparatus has the following advantages: dilute macromolecule solutions can be used; high shear gradients are easily obtained; only small volumes of solution are needed. The flow can be stopped rapidly so that relaxation times for disorientation can be studied. The flow dichorism of native, two-stranded DNA has been measured for the molecular weight range of 0.6 × 106 to 125 × 106, and for the shear gradient range (in aqueous solution at 25°C) from 200 sec?1 to 21000 sec?1. At a fixed gradient the dichroism increases with molecular weight, but the curve is concave downwards. At a given molecular weight the dichroism increases with increasing shear gradient, but the curve is concave downwards. When the solvent viscosity and temperature are varied, the dichroism is a function of η〈G〉/T showing that the orientation is due to hydro-dynamic shear stress and that the flexibility of DNA in a flow field is not due to local denaturation. The Zimm-Rouse theory with no parameters taken from flow optical data predicts the correct order of magnitude of the dichroism but the experimentally observed shear gradient and molecular weight dependence do not fit the theory. This is an expected result, since the theory is believed to be applicable only at small distortions and extensions of the macromolecule.  相似文献   

6.
Static and dynamic light-scattering measurements are reported on zinc-insulin at room temperature (21 ± l°C) and pH = 6.88 in 0.1M NaCl aqueous solution. The experiments were performed at very low concentration, in the range 0.12 × 10?4 to 0.90 × 10?4 g cm?3. Within experimental error, we find no evidence for a critical micellar concentration in this system. The aggregation phenomenon starts immediately after preparation of the solutions, and takes several days to come to stable equilibrium. The concentration dependence of the diffusion coefficients, D z, = Do (1 — kDC), is negative, and kD was observed to decrease as a function of time, while the aggregate size was found to increase. The equivalent concentration coefficient, ?2BM W, obtained from static light scattering, showed a similar behavior, and, within experimental error, was found to be numerically equal to kD. From the relation found between the diffusion coefficient at infinite dilution and the molecular weight of the aggregates, log D0 = ?0.240 log M w ? 5.077, we deduce that the insulin aggregates are compact structures with a characteristic radius of 0.71 Å/(dalton)1/3, surrounded by a hydration layer of a thickness of 8.0 Å. The equilibrium aggregation number is approximately 10.  相似文献   

7.
V P Tomaselli 《Biopolymers》1974,13(12):2423-2434
The dc conductivity of hydrated bovine Achilles' tendon collagen has been determined as a function of hydration over a limited temperature range. At ambient temperature the conductivity changes from 10?15 (Ω cm)?1 in the dry state to about 10?8 (Ω cm)?1 at ~24% water content by weight. For all temperatures the conductivity increases exponentially with hydration obeying σ(h) = A exp (βh), where h is a measure of the hydration, A is independent of temperature, and the parameter β ~ T?1. It is shown that the data may be described by an impurity-type mechanism in which the effective activation energy for the process is dependent on temperature and hydration. Conduction is assumed to be electronic with the impurity (water) acting as a donor. In the solid state the effect of water on the conductivity is reversible indicating the absence of chemical alteration of the hydrated collagen.  相似文献   

8.
Nuclear magnetic relaxation rates of H217O, 23Na+, and 25Mg2+ have been measured in aqueous hyaluronate solutions. The dependence on solution pH of the relaxation rates has been investigated, as well as the competition behavior of Na+ with Ca2+ and Mg2+. H217O and 23Na+ relaxation rates in chondroitin and hyaluronate solutions have been compared in the interval, 2 ? pH ? 12.5. The ion binding of hyaluronate can be fully accounted for by Coulomb interactions, with no need to involve chemical specificity. The hydration is only slighly pH dependent, and is comparable in magnitude to hydration of synthetic polyelectrolytes and monosaccharides. Ion-binding and hydration properties of hyaluronate and chondroitin are quite similar, except at elevated pH. At alkaline pH, an increase in charge density with pH is seen in hyaluronate and, to a much lesser degree, in chondroitin, possibly due to the titration of hydroxy groups. H217O data indicate an alkali-induced transition in both glycosaminoglycans.  相似文献   

9.
A theoretical study of effects of excluded volume intermolecular interactions on the sharpness of helix–coil transitions in solutions of polyamino acids or simple proteins indicates that the transition width may vary appreciably as a function of polymer concentration. The analysis is based on a second virial approximation for the excess free energy of mixing of a solution of polymers of varying degrees of helicity. The virial coefficients involved are roughly estimated on the basis of gross polymer geometry. For large N (degree of polymerization) the transition is found, typically to sharpen with increasing concentration, becoming second order and then first order at sufficiently high concentrations. The critical polymer concentration is found to be roughly of the order N?1.2 ??0?1 for an “all or none” model and of order σ1/2 N?0.2 ??0?1 for a model with continuously variable degree of helicity (??0 is the volume of a single helical molecule and σ1/2 the normalized statistical weight of a helix–coil interface). In the second case for N ~ 103 and σ ~ 10?2–10?4, the predicted critical concentration is in the range 10?1–10?3 g/cm.3 Comparison is made with experiments on solutions of poly(γ-benzyl-L glutamate).  相似文献   

10.
The crude nuclear extract from the liver of estrogenized chickens contains 0.3–1 pmol/g tissue of the estrogen receptor. The receptor has been partially purified by ammonium sulphate precipitation and affinity chromatography on 17β-estradiol-17-hemisuccinyl-ovalbumin-Sepharose 4B. A 12% pure receptor preparation (2700-fold purification) with a yield of 17% could be obtained. The partially purified receptor has retained most properties which it displayed in cruder preparations, e.g. the dissociation constant of 10?9?10?10 M, the hormone specificity and the sedimentation coefficient of 3.9 S. The size (Stokes radius, 2.9 nm; molecular weight, 49 000) and the asymetry (f/f0 = 1.10) of the receptor molecule, however, appear slightly reduced after the purification.  相似文献   

11.
In our previous work we have shown that the age‐dependent decrease in the magnetosensitivity of heart muscle hydration is accompanied by a dysfunction of the Na+/K+ pump. The reciprocal relation between the Na+/K+ pump and Na+/Ca2+ exchange in development was suggested as a possible pathway for the age‐dependent decrease in the magnetosensitivity of heart muscle hydration (water content). Because high and low affinity ouabain receptors in cell membranes are involved in Na+/Ca2+ exchange and Na+/K+ pump functions, respectively, the effect of a 0.2 T static magnetic field (SMF) on dose‐dependent, ouabain‐induced hydration and [3H]‐ouabain binding with heart muscle tissues in young, adult and older rats was studied. Three populations of receptors in membranes with high (10?11–10?9 M), middle (10?9–10?7 M) and low (10?7–10?4 M) affinity to [3H]‐ouabain were distinguished, which had specific dose‐dependent [3H]‐ouabain binding kinetics and effects on muscle hydration. The magnetosensitivity of [3H]‐ouabain binding kinetics with high affinity receptors was prominent in all the three age groups of animals, while with low affinity receptors it was more expressed only in the young group of animals. All three types of receptors that caused modulations of muscle hydration were age dependent and magnetosensitive. Based on the obtained data we came to the conclusion that heart muscle hydration in young animals is more magnetosensitive due to the intense expression of high affinity ouabain receptors, which declines with aging. Bioelectromagnetics 34:312–322, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
The article presents data on changes in physicochemical properties of different biological membranes (plasmatic, microsomal, synaptosomes) under the action of biologically active substances, which are different in their chemical structure and the mechanism of action (natural and synthetic antioxidants, thyrotropin - releasing hormone, phorbol esters), in the wide range of concentrations (10?22?10?3 M). Dose dependences of the effect of biologically active substances on the activity of membrane-bound enzymes, lipid peroxidation, the structural state of the various regions of the lipid bilayer of membranes have been obtained and analyzed in terms of their formal generality of polymodality, number and position of the maxima, a sign change of the effect. An attempt to explain the mechanism of each of the observed peaks in these curves has been made. The maximum in the range of relatively high “physiological” concentrations (10?3–10?7 M) is associated with introduction of biologically active substances into biomembranes. In this study maxima in the range of ultra-low doses (10?11–10?16 M) and “apparent” concentrations (10?18 M), where the presence of biologically active substance molecule in a reaction volume is probabilistic in nature, are explained by physicochemical properties of diluted biologically active substances solutions. This conclusion is based on our data on the changes in IR spectra of aqueous solutions of biologically active substances and the results obtained by academician A.I. Konovalov et al. concerning the physicochemical properties of dilute solutions of biologically active substances (conductivity, surface tension, charge), due to the formation of so-called “nanoassociates” from biologically active substance molecule and numerous number of water molecules. The nanoassociates formation and biological effect disappear if the low concentration solutions are kept in a special shielded permalloy container protecting its contents from external electromagnetic field. Thus, nanoassociates are the material carriers of the unique ability of the ultra-low doses of biologically active substances to exhibit biological effects.  相似文献   

13.
We investigated at the molecular level the interaction between, HIV-1 recombinant gp160 (rgp160) and low-molecular-weight dextran sulfate. We demonstrate the occurrence of a specific interaction between rgp160 and sulfated dextran beads, which is saturable, pH-dependent and inhibitable by soluble dextran sulfate but not by soluble dextran. This specific interaction has a low affinity, with an estimated Kd in the 10?4 M range. In addition, the binding of rgp160 to soluble recombinant CD4 (sT4) can only be inhibited by the preincubation of rgp160, but not of sT4, with dextran sulfate. Taken together, these results demonstrate the occurrence of a low affinity, but specific interaction between dextran sulfate and rgp160. This may account, at least in part, for the anti-HIV-1 activity of dextran sulfate.  相似文献   

14.
Self-organization, the physicochemical properties of aqueous and salt solutions of quinine and the effects of salt quinine solutions in a wide range of concentrations (1 · 10?22?1 · 10?3 M) on the electrical characteristics of the edible snail’s identified neurons were studied. Similar non-monotonic concentration dependencies of physicochemical properties of aqueous and salt quinine solutions at low concentrations are obtained. This allows of predicting the occurrence of biological effects at low concentrations of quinine solutions. Intrinsic (within 5% of the interval) changes in membrane potential, the amplitude and duration of the neuron action potential under the influence of quinine salt solutions at concentrations of quinine of 1 · 10?20, 1 · 10?18, 1 · 10?10 M are found. For these concentrations the extreme values of specific conductivity and pH are shown.  相似文献   

15.
16.
Cartilage proteoglycan was isolated from bovine nasal septum and fractionated according to buoyant density after dissociative CsCl density gradient centrifugation. Gel-exclusion chromatography showed that hyaluronic acid was present in fractions of density lower than 1.69 g/mL. The molecular weight, assessed by sedimentation equilibrium analysis, of the proteoglycan present in the fractions with density > 1.69 g/mL, which appeared chromatographically homogeneous and constituted 54% of the preparation, ranged from 1.0 to 2.6 × 106 for v = 0.55 cm3 g?1. Carbodiimide-induced modification of the carboxyl groups by methylamine resulted in a reduction of the molecular weight to 0.74 – 1.25 × 106. An analogous reduction in molecular weight was obtained after equilibration of this proteoglycan fraction with hyaluronic acid oligomers containing five disaccharide units. Since both procedures are known to cause inhibition of the interaction between proteoglycans and hyaluronic acid, it is suggested that this lower molecular-weight range represents the true degree of polydispersity of the sub-units of hyaline cartilage proteoglycan constituting this fraction, while the higher values obtained for the intact proteoglycan are the result of the presence of hyaluronic acid in the sample. The molecular-weight range of the whole proteoglycan subunit preparation, assessed after carboxyl group modification, was 0.5–1.2 × 106. Apparently normal and abnormal cartilage was excised from single human osteoarthrosic femoral heads. Proteoglycans extracted by 4M guanidine hydrochloride were isolated after dissociative density gradient centrifugation and subjected to carboxyl group modification. Preparations from normal tissue exhibited molecular-weight averages ranging from 5 to 9 × 105. A molecular-weight reduction was observed with proteoglycans isolated from abnormal areas.  相似文献   

17.
The water-insoluble 1,4-β-linked products formed from UDP-[14C]glucose by pea membranes were dissolved in hot dimethyl-sulfoxide/paraformaldehyde and fractionated on columns of controlled pore glass beads calibrated with dextran standards. The products eluted with a peak size close to 70 kilodaltons in dextran equivalents. Similar elution profiles were obtained for products formed in brief or extended incubations and at high or low substrate concentrations. Methylation analysis indicated that only a few [14C]glucose units had been added to an endogenous acceptor to form this product. In the presence of UDP-xylose at concentrations equal to or less than UDP-[14C]glucose, incorporation from the latter was enhanced and the products elongated with time to a size range where the major components eluted between dextran 264 and 500 kilodaltons. Treatment with endo-1,4-β-glucanase resulted in a mixture of oligosaccharides, including the xyloglucan subunit Glc4Xyl3, which were hydrolyzed further by mixed glycosidases to labeled glucose and isoprimeverose (xylosyl-1,6-α-d-glucose). In pulse-chase experiments, the low molecular weight product formed from UDP-[14C]glucose alone was clearly a precursor for high molecular weight products formed subsequently in the presence of both UDP-glucose and UDP-xylose. It is concluded that the 1,4-β-transglucosylation activity detected in these tests was due to an enzyme that is required for biosynthesis of the backbone of xyloglucan.  相似文献   

18.
Avadhesh K. Gupta 《Biopolymers》1976,15(8):1543-1554
Dielectric relaxation studies in the frequency range 100 Hz to 2 MHz of poly(γ-benzyl-L -glutamate) in dioxane have been carried out over a range of concentration 10?4–10?2g/g. The structure of aggregates is analyzed in terms of dipole moment and relaxation time. A critical concentration (? 10?3 g/g for the studied molecular weights) has been determined below which the aggregates are found to have linear head to tail type structure. Above the critical concentration a different structure of aggregates is apparent which could not be fully analyzed by these measurements alone. Possible forms of aggregation above the critical concentration are discussed. Formation of long range order which would lead to nematic liquid crystalline phase at higher concentrations has been discussed as one of the possible explanations for the observed behavior above the critical concentration. Maximum length of linear head to tail type aggregates for poly(γ-benzyl-L -glutamate) in dioxane as determined from these results correspond to an α-helix of molecular weight 210,000. A slight difference in the purity of dioxane has been shown to have an influence on the reproducibility of the state of aggregation as well as on the rate of disaggregation on dilution.  相似文献   

19.
NAD+ has been covalently attached to dextrans having different molecular weights to give various NAD+ densities (mol NAD+ per mol d-glucosyl residue). The effects of molecular weight of dextran and of NAD+ density on the coenzyme activity of the dextran-bound NAD+ derivatives were examined for the reactions catalysed by alcohol dehydrogenase (alcohol: NAD+ oxidoreductase, EC 1.1.1.1) and lactate dehydrogenase (l-lactate:NAD+ oxidoreductase, EC 1.1.1.27). The molecular weight of dextran had little effect on coenzyme activity in the range 10 000 to 500 000. At low NAD+ density (<0.05 mol NAD+/mol d-glucosyl residue), the coenzyme activities of the derivatives were relatively low, but higher densities had little effect on the activity. Dextran-bound NAD+ derivatives were twice as stable as free NAD+.  相似文献   

20.
Partial compressibilities of globular proteins in water are reviewed. Contribution of hydrational and of intrinsic compressibilities to experimental partial quantity have been evaluated from ultrasonic data using two independent methods: (a) additive calculation of the hydrational contributions of the surface atomic groups and (b) an analysis of correlation between partial compressibility and molecular surface area. The value (14 ± 3) × 10?6 bar ?1 for the isothermal compressibility coefficient of the protein interior at 25°C was obtained as an average value for variety of globular proteins. This value is similar to that of solid organic polymers. Possible relaxation contribution to partial compressibility is roughly estimated from comparison of thermodynamic with x-ray data on protein compressibility. The average compressibility of water in the hydration shell of proteins was found to be 35 × 10?6 bar ?1, which is 20% less than that of pure water. © 1993 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号