首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
2.
Spiroplasma kunkelii is a cell wall-free, helical, and motile mycoplasma-like organism that causes corn stunt disease in maize. The bacterium has a compact genome with a gene set approaching the minimal complement necessary for cellular life and pathogenesis. A set of 21 ATP-binding cassette (ABC) domains was identified during the annotation of a draft S. kunkelii genome sequence. These 21 ABC domains are present in 18 predicted proteins, and are components of 16 functional systems, which account for 5% of the protein coding capacity of the S. kunkelii genome. Of the 16 systems, 11 are membrane-bound transporters, and two are cytosolic systems involved in DNA repair and the oxidative stress response; the genes for the remaining three hypothetical systems harbor nonsense and/or frameshift mutations, so their functional status is doubtful. Assembly of the 11 multicomponent transporters, and comparisons with other known systems permitted functional predictions for the S. kunkelii ABC transporter systems. These transporters convey a wide variety of substrates, and are critical for nutrient uptake, multidrug resistance, and perhaps virulence. Our findings provide a framework for functional characterization of the ABC systems in S. kunkelii.Communicated by W. Goebel  相似文献   

3.
ATP-binding cassette (ABC) transporters are integral membrane proteins that actively transport molecules across cell membranes. In Escherichia coli they consist primarily of import systems that involve in addition to the ABC transporter itself a substrate binding protein and outer membrane receptors or porins, and a number of transporters with varied functions. Recent crystal structures of a number of ATPase domains, substrate binding proteins, and full-length transporters have given new insight in the molecular basis of transport. Bioinformatics approaches allow an approximate identification of all ABC transporters in E. coli and their relation to other known transporters. Computational approaches involving modeling and simulation are beginning to yield insight into the dynamics of the transporters. We summarize the function of the known ABC transporters in E. coli and mechanistic insights from structural and computational studies.  相似文献   

4.
5.
We carried out a quantitative detection of Candidatus Liberibacter asiaticus, the bacterium associated with the disease of huanglongbing, in the vector psyllid Diaphorina citri by using a TaqMan real‐time PCR assay. The concentration of the bacterium was monitored at 5‐day intervals for a period of 20 days after psyllids were exposed as fifth instar nymphs or adults to a Ca. L. asiaticus‐infected plant for an acquisition access period of 24 h. When adults fed on Ca. L. asiaticus‐infected plant, the concentration of the bacterium did not increase significantly and the pathogen was not transmitted to any citrus seedlings. In contrast, when psyllids fed on infected plant as nymphs, the concentration of the pathogen significantly increased by 25‐, 360‐ and 130‐fold from the initial acquisition day to 10, 15 and 20 days, respectively. Additionally, the pathogen was successfully transmitted to 67% of citrus seedlings by emerging adults. Our data suggested that multiplication of the bacterium into the psyllids is essential for an efficient transmission and show that it is difficult for adults to transmit the pathogen unless they acquire it as nymphs.  相似文献   

6.
The phage shock protein (Psp) system is induced by extracytoplasmic stress and thought to be important for the maintenance of proton motive force. We investigated the contribution of PspA to Salmonella virulence. A pspA deletion mutation significantly attenuates the virulence of Salmonella enterica serovar Typhimurium following intraperitoneal inoculation of C3H/HeN (Ityr) mice. PspA was found to be specifically required for virulence in mice expressing the natural resistance‐associated macrophage protein 1 (Nramp1) (Slc11a1) divalent metal transporter, which restricts microbial growth by limiting the availability of essential divalent metals within the phagosome. Salmonella competes with Nramp1 by expressing multiple metal uptake systems including the Nramp‐homologue MntH, the ABC transporter SitABCD and the ZIP family transporter ZupT. PspA was found to facilitate Mn2+ transport by MntH and SitABCD, as well as Zn2+ and Mn2+ transport by ZupT. In vitro uptake of 54Mn2+ by MntH and ZupT was reduced in the absence of PspA. Transport‐deficient mutants exhibit reduced viability in the absence of PspA when grown under metal‐limited conditions. Moreover, the ZupT transporter is required for Salmonella enterica serovar Typhimurium virulence in Nramp1‐expressing mice. We propose that PspA promotes Salmonella virulence by maintaining proton motive force, which is required for the function of multiple transporters mediating bacterial divalent metal acquisition during infection.  相似文献   

7.
Human gut bifidobacteria rely on ATP‐binding cassette (ABC) transporters for oligosaccharide uptake. Multiple oligosaccharide‐specific solute‐binding protein (SBP) genes are occasionally associated with a single ABC transporter, but the significance of this multiplicity remains unclear. Here, we characterize BlMnBP1 and BlMnBP2, the two SBPs associated to the β‐manno‐oligosaccharide (MnOS) ABC transporter in Bifidobacterium animalis subsp. lactis. Despite similar overall specificity and preference to mannotriose (Kd≈80 nM), affinity of BlMnBP1 is up to 2570‐fold higher for disaccharides than BlMnBP2. Structural analysis revealed a substitution of an asparagine that recognizes the mannosyl at position 2 in BlMnBP1, by a glycine in BlMnBP2, which affects substrate affinity. Both substitution types occur in bifidobacterial SBPs, but BlMnBP1‐like variants prevail in human gut isolates. B. animalis subsp. lactis ATCC27673 showed growth on gluco and galactomannans and was able to outcompete a mannan‐degrading Bacteroides ovatus strain in co‐cultures, attesting the efficiency of this ABC uptake system. By contrast, a strain that lacks this transporter failed to grow on mannan. This study highlights SBP diversification as a possible strategy to modulate oligosaccharide uptake preferences of bifidobacterial ABC‐transporters during adaptation to specific ecological niches. Efficient metabolism of galactomannan by distinct bifidobacteria, merits evaluating this plant glycan as a potential prebiotic.  相似文献   

8.
Some ABC transporters play a significant role in human health and illness because they confer multidrug resistance (MDR) through their overexpression. Compounds that inhibit the drug efflux mechanism can improve efficacy or reverse resistance. Of the eight described ABC transporter subfamilies, those proteins conferring MDR in humans are in subfamilies A, B, C, and G. In nematodes, transporters in subfamilies B and C are suggested to confer resistance to ivermectin. The Brugia malayi ABC transporter superfamily was examined to assess their potential to influence sensitivity to moxidectin. There was an increase in expression of ABC transporters in subfamilies A, B, C, and G following treatment. Co-administration of moxidectin with inhibitors of ABC transporter function did not enhance sensitivity to moxidectin in males; however, sensitivity was significantly enhanced in females and microfilariae. The work suggests that ABC transporters influence sensitivity to moxidectin and have a potential role in drug resistance.  相似文献   

9.
10.
Q Cong  LN Kinch  BH Kim  NV Grishin 《PloS one》2012,7(7):e41071
Candidatus Liberibacter asiaticus (Ca. L. asiaticus) is a parasitic gram-negative bacterium that is closely associated with Huanglongbing (HLB), a worldwide citrus disease. Given the difficulty in culturing the bacterium and thus in its experimental characterization, computational analyses of the whole Ca. L. asiaticus proteome can provide much needed insights into the mechanisms of the disease and guide the development of treatment strategies. In this study, we applied state-of-the-art sequence analysis tools to every Ca. L. asiaticus protein. Our results are available as a public website at http://prodata.swmed.edu/liberibacter_asiaticus/. In particular, we manually curated the results to predict the subcellular localization, spatial structure and function of all Ca. L. asiaticus proteins (http://prodata.swmed.edu/liberibacter_asiaticus/curated/). This extensive information should facilitate the study of Ca. L. asiaticus proteome function and its relationship to disease. Pilot studies based on the information from our website have revealed several potential virulence factors, discussed herein.  相似文献   

11.
The outer membrane (OM) of Gram-negative bacteria, which consists of lipopolysaccharides (LPS) in the outer leaflet and phospholipids (PLs) in the inner leaflet, plays a key role in antibiotic resistance and pathogen virulence. The maintenance of lipid asymmetry (Mla) pathway is known to be involved in PL transport and contributes to the lipid homeostasis of the OM, yet the underlying molecular mechanism and the directionality of PL transport in this pathway remain elusive. Here, we reported the cryo-EM structures of the ATP-binding cassette (ABC) transporter MlaFEBD from P. areuginosa, the core complex in the Mla pathway, in nucleotide-free (apo)-, ADP (ATP + vanadate)- and ATP (AMPPNP)-bound states as well as the structures of MlaFEB from E. coli in apo- and AMPPNP-bound states at a resolution range of 3.4–3.9 Å. The structures show that the MlaFEBD complex contains a total of twelve protein molecules with a stoichiometry of MlaF2E2B2D6, and binds a plethora of PLs at different locations. In contrast to canonical ABC transporters, nucleotide binding fails to trigger significant conformational changes of both MlaFEBD and MlaFEB in the nucleotide-binding and transmembrane domains of the ABC transporter, correlated with their low ATPase activities exhibited in both detergent micelles and lipid nanodiscs. Intriguingly, PLs or detergents appeared to relocate to the membrane-proximal end from the distal end of the hydrophobic tunnel formed by the MlaD hexamer in MlaFEBD upon addition of ATP, indicating that retrograde PL transport might occur in the tunnel in an ATP-dependent manner. Site-specific photocrosslinking experiment confirms that the substrate-binding pocket in the dimeric MlaE and the MlaD hexamer are able to bind PLs in vitro, in line with the notion that MlaFEBD complex functions as a PL transporter.  相似文献   

12.
Antibiotic‐producing microorganisms have evolved several self‐resistance mechanisms to prevent auto‐toxicity. Overexpression of specific transporters to improve the efflux of toxic antibiotics has been found one of the most important and intrinsic resistance strategies used by many Streptomyces strains. In this work, two ATP‐binding cassette (ABC) transporter‐encoding genes located in the natamycin biosynthetic gene cluster, scnA and scnB, were identified as the primary exporter genes for natamycin efflux in Streptomyces chattanoogensis L10. Two other transporters located outside the cluster, a major facilitator superfamily transporter Mfs1 and an ABC transporter NepI/II were found to play a complementary role in natamycin efflux. ScnA/ScnB and Mfs1 also participate in exporting the immediate precursor of natamycin, 4,5‐de‐epoxynatamycin, which is more toxic to S. chattanoogensis L10 than natamycin. As the major complementary exporter for natamycin efflux, Mfs1 is up‐regulated in response to intracellular accumulation of natamycin and 4,5‐de‐epoxynatamycin, suggesting a key role in the stress response for self‐resistance. This article discusses a novel antibiotic‐related efflux and response system in Streptomyces, as well as a self‐resistance mechanism in antibiotic‐producing strains.  相似文献   

13.
The ATP‐binding cassette (ABC) transporters control placental transfer of several nutrients, steroids, immunological factors, chemicals, and drugs at the maternal‐fetal interface. We and others have demonstrated a gestational age‐dependent expression pattern of two ABC transporters, P‐glycoprotein and breast cancer resistance protein throughout pregnancy. However, no reports have comprehensively elucidated the expression pattern of all 50 ABC proteins, comparing first trimester and term human placentae. We hypothesized that placental ABC transporters are expressed in a gestational‐age dependent manner in normal human pregnancy. Using the TaqMan® Human ABC Transporter Array, we assessed the mRNA expression of all 50 ABC transporters in first (first trimester, n = 8) and third trimester (term, n = 12) human placentae and validated the resulting expression of selected ABC transporters using qPCR, Western blot and immunohistochemistry. A distinct gene expression profile of 30 ABC transporters was observed comparing first trimester vs. term placentae. Using individual qPCR in selected genes, we validated the increased expression of ABCA1 (P < 0.01), ABCA6 (P < 0.001), ABCA9 (P < 0.001) and ABCC3 (P < 0.001), as well as the decreased expression of ABCB11 (P < 0.001) and ABCG4 (P < 0.01) with advancing gestation. One important lipid transporter, ABCA6, was selected to correlate protein abundance and characterize tissue localization. ABCA6 exhibited increased protein expression towards term and was predominantly localized to syncytiotrophoblast cells. In conclusion, expression patterns of placental ABC transporters change as a function of gestational age. These changes are likely fundamental to a healthy pregnancy given the critical role that these transporters play in the regulation of steroidogenesis, immunological responses, and placental barrier function and integrity.  相似文献   

14.
Resistance against antimicrobial peptides in many Firmicutes bacteria is mediated by detoxification systems that are composed of a two-component regulatory system (TCS) and an ATP-binding cassette (ABC) transporter. The histidine kinases of these systems depend entirely on the transporter for sensing of antimicrobial peptides, suggesting a novel mode of signal transduction where the transporter constitutes the actual sensor. The aim of this study was to investigate the molecular mechanisms of this unusual signaling pathway in more detail, using the bacitracin resistance system BceRS-BceAB of Bacillus subtilis as an example. To analyze the proposed communication between TCS and the ABC transporter, we characterized their interactions by bacterial two-hybrid analyses and could show that the permease BceB and the histidine kinase BceS interact directly. In vitro pulldown assays confirmed this interaction, which was found to be independent of bacitracin. Because it was unknown whether BceAB-type transporters could detect their substrate peptides directly or instead recognized the peptide-target complex in the cell envelope, we next analyzed substrate binding by the transport permease, BceB. Direct and specific binding of bacitracin by BceB was demonstrated by surface plasmon resonance spectroscopy. Finally, in vitro signal transduction assays indicated that complex formation with the transporter influenced the autophosphorylation activity of the histidine kinase. Taken together, our findings clearly show the existence of a sensory complex composed of TCS and ABC transporters and provide the first functional insights into the mechanisms of stimulus perception, signal transduction, and antimicrobial resistance employed by Bce-like detoxification systems.  相似文献   

15.
16.
In the pathogenic bacterium Bacillus anthracis, virulence requires induced expression of the anthrax toxin and capsule genes. Elevated CO2/bicarbonate levels, an indicator of the host environment, provide a signal ex vivo to increase expression of virulence factors, but the mechanism underlying induction and its relevance in vivo are unknown. We identified a previously uncharacterized ABC transporter (BAS2714-12) similar to bicarbonate transporters in photosynthetic cyanobacteria, which is essential to the bicarbonate induction of virulence gene expression. Deletion of the genes for the transporter abolished induction of toxin gene expression and strongly decreased the rate of bicarbonate uptake ex vivo, demonstrating that the BAS2714-12 locus encodes a bicarbonate ABC transporter. The bicarbonate transporter deletion strain was avirulent in the A/J mouse model of infection. Carbonic anhydrase inhibitors, which prevent the interconversion of CO2 and bicarbonate, significantly affected toxin expression only in the absence of bicarbonate or the bicarbonate transporter, suggesting that carbonic anhydrase activity is not essential to virulence factor induction and that bicarbonate, and not CO2, is the signal essential for virulence induction. The identification of this novel bicarbonate transporter essential to virulence of B. anthracis may be of relevance to other pathogens, such as Streptococcus pyogenes, Escherichia coli, Borrelia burgdorferi, and Vibrio cholera that regulate virulence factor expression in response to CO2/bicarbonate, and suggests it may be a target for antibacterial intervention.  相似文献   

17.
ABC‐type drug efflux pumps, e.g., ABCB1 (=P‐glycoprotein, =MDR1), ABCC1 (=MRP1), and ABCG2 (=MXR, =BCRP), confer a multi‐drug resistance (MDR) phenotype to cancer cells. Furthermore, the important contribution of ABC transporters for bioavailability, distribution, elimination, and blood–brain barrier permeation of drug candidates is increasingly recognized. This review presents an overview on the different computational methods and models pursued to predict ABC transporter substrate properties of drug‐like compounds. They encompass ligand‐based approaches ranging from ‘simple rule’‐based efforts to sophisticated machine learning methods. Many of these models show excellent performance for the data sets used. However, due to the complex nature of the applied methods, useful interpretation of the models that can be directly translated into chemical structures by the medicinal chemist is rather difficult. Additionally, very recent and promising attempts in the field of structure‐based modeling of ABC transporters, which embody homology modeling as well as recently published X‐ray structures of murine ABCB1, will be discussed.  相似文献   

18.
19.
The ABC maltose transporter   总被引:6,自引:0,他引:6  
Bacterial ATP-binding cassette (ABC) transporters and their homologues in eukaryotic cells form one of the largest superfamilies known today. They function as primary pumps that couple substrate translocation across the cytoplasmic membrane to ATP hydrolysis. Although ABC transporters have been studied for more than three decades, the structure of these multicomponent systems is unknown, and the mechanism of transport is not understood. This article reviews one of the most widely studied ABC systems, the maltose transporter of Escherichia coli . A first structural model of the transport channel allows discussion of possible mechanisms of transport. In addition, recent experimental evidence suggests that regulation of gene expression and transport activity is far more complex than expected.  相似文献   

20.
The SLC26/SulP (solute carrier/sulphate transporter) proteins are a ubiquitous superfamily of secondary anion transporters. Prior studies have focused almost exclusively on eukaryotic members and bacterial members are frequently classified as sulphate transporters based on their homology with SulP proteins from plants and fungi. In this study we have examined the function and physiological role of the Escherichia coli Slc26 homologue, YchM. We show that there is a clear YchM‐dependent growth defect when succinate is used as the sole carbon source. Using an in vivo succinate transport assay, we show that YchM is the sole aerobic succinate transporter active at acidic pH. We demonstrate that YchM can also transport other C4‐dicarboxylic acids and that its substrate specificity differs from the well‐characterized succinate transporter, DctA. Accordingly ychM was re‐designated dauA (dicarboxylic acid uptake system A). Finally, our data suggest that DauA is a protein with transport and regulation activities. This is the first report that a SLC26/SulP protein acts as a C4‐dicarboxylic acid transporter and an unexpected new function for a prokaryotic member of this transporter family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号