首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
2.
Conformational properties of the angiotensin II precursor, angiotensin I (AngI) and analogues containing the paramagnetic amino acid TOAC (2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid) at positions 0, 1, 3, 5, 8, 9, and 10, were examined by EPR, CD, and fluorescence. The conformational data were correlated to their activity in muscle contraction experiments and to their properties as substrates of the angiotensin I-converting enzyme (ACE). Biological activity studies indicated that TOAC0-AngI and TOAC1-AngI maintained partial potency in guinea pig ileum and rat uterus. Kinetic parameters revealed that only derivatives labeled closer to the N-terminus (positions 0, 1, 3, and 5) were hydrolyzed by ACE, indicating that peptides bearing the TOAC moiety far from the ACE cleavage site (Phe8-His9 peptide bond) were susceptible to hydrolysis, albeit less effectively than the parent compound. CD spectra indicated that AngI exhibited a flexible structure resulting from equilibrium between different conformers. While the conformation of N-terminally-labeled derivatives was similar to that of the native peptide, a greater propensity to acquire folded structures was observed for internally-labeled, as well as C-terminally labeled, analogues. These structures were stabilized in secondary structure-inducing agent, TFE. Different analogues gave rise to different β-turns. EPR spectra in aqueous solution also distinguished between N-terminally, internally-, and C-terminally labeled peptides, yielding narrower lines, indicative of greater mobility for the former. Interestingly, the spectra of peptides labeled at, or close, to the C-terminus, showed that the motion in this part of the peptides was intermediate between that of N-terminally and internally-labeled peptides, in agreement with the suggestion of turn formation provided by the CD spectra. Quenching of the Tyr4 fluorescence by the differently positioned TOAC residues corroborated the data obtained by the other spectroscopic techniques. Lastly, we demonstrated the feasibility of monitoring the progress of ACE-catalyzed hydrolysis of TOAC-labeled peptides by following time-dependent changes in their EPR spectra.  相似文献   

3.
Alamethicin is a 20-residue, hydrophobic, helical peptide, which forms voltage-sensitive ion channels in lipid membranes. The helicogenic, nitroxyl amino acid TOAC was substituted isosterically for Aib at residue positions 1, 8, or 16 in a F50/5 alamethicin analog to enable EPR studies. Electron spin-echo envelope modulation (ESEEM) spectroscopy was used to investigate the water exposure of TOAC-alamethicin introduced into membranes of saturated or unsaturated diacyl phosphatidylcholines that were dispersed in D2O. Echo-detected EPR spectra were used to assess the degree of assembly of the peptide in the membrane, via the instantaneous diffusion from intermolecular spin-spin interactions. The profile of residue exposure to water differs between membranes of saturated and unsaturated lipids. In monounsaturated dioleoyl phosphatidylcholine, D2O-ESEEM intensities decrease from TOAC1 to TOAC8 and TOAC16 but not uniformly. This is consistent with a transmembrane orientation for the protoassembled state, in which TOAC16 is located in the bilayer leaflet opposite to that of TOAC1 and TOAC8. Relative to the monomer in fluid bilayers, assembled alamethicin is disposed asymmetrically about the bilayer midplane. In saturated dimyristoyl phosphatidylcholine, the D2O-ESEEM intensity is greatest for TOAC8, indicating a more superficial location for alamethicin, which correlates with the difference in orientation between gel- and fluid-phase membranes found by conventional EPR of TOAC-alamethicin in aligned phosphatidylcholine bilayers. Increasing alamethicin/lipid ratio in saturated phosphatidylcholine shifts the profile of water exposure toward that with unsaturated lipid, consistent with proposals of a critical concentration for switching between the two different membrane-associated states.  相似文献   

4.
Cytoplasmic domains of transmembrane bacterial chemoreceptors are largely extended four‐helix coiled coils. Previous observations suggested the domain was structurally dynamic. We probed directly backbone dynamics of this domain of the transmembrane chemoreceptor Tar from Escherichia coli using site‐directed spin labeling and electron paramagnetic resonance (EPR) spectroscopy. Spin labels were positioned on solvent‐exposed helical faces because EPR spectra for such positions reflect primarily polypeptide backbone movements. We acquired spectra for spin‐labeled, intact receptor homodimers solubilized in detergent or inserted into native E. coli lipid bilayers in Nanodiscs, characterizing 16 positions distributed throughout the cytoplasmic domain and on both helices of its helical hairpins, one amino terminal to the membrane‐distal tight turn (N‐helix), and the other carboxyl terminal (C‐helix). Detergent solubilization increased backbone dynamics for much of the domain, suggesting that loss of receptor activities upon solubilization reflects wide‐spread destabilization. For receptors in either condition, we observed an unanticipated difference between the N‐ and C‐helices. For bilayer‐inserted receptors, EPR spectra from sites in the membrane‐distal protein‐interaction region and throughout the C‐helix were typical of well‐structured helices. In contrast, for approximately two‐thirds of the N‐helix, from its origin as the AS‐2 helix of the membrane‐proximal HAMP domain to the beginning of the membrane‐distal protein‐interaction region, spectra had a significantly mobile component, estimated by spectral deconvolution to average approximately 15%. Differential helical dynamics suggests a four‐helix bundle organization with a pair of core scaffold helices and two more dynamic partner helices. This newly observed feature of chemoreceptor structure could be involved in receptor function.  相似文献   

5.
Understanding the complex relationship between amino acid sequence and protein behaviors, such as folding and self‐association, is a major goal of protein research. In the present work, we examined the effects of deleting a C‐terminal residue on the intrinsic properties of an amphapathic α‐helix of mastoparan‐B (MP‐B), an antimicrobial peptide with the sequence LKLKSIVSWAKKVL‐NH2. We used circular dichroism and nuclear magnetic resonance to demonstrate that the peptide MP‐B[1‐13] displayed significant unwinding at the N‐terminal helix compared with the parent peptide of MP‐B, as the temperature increased when the residue at position 14 was deleted. Pulsed‐field gradient nuclear magnetic resonance data revealed that MP‐B forms a larger diffusion unit than MP‐B[1‐13] at all experimental temperatures and continuously dissociates as the temperature increases. In contrast, the size of the diffusion unit of MP‐B[1‐13] is almost independent of temperature. These findings suggest that deleting the flexible, hydrophobic amino acid from the C‐terminus of MP‐B is sufficient to change the intrinsic helical thermal stability and self‐association. This effect is most likely because of the modulation of enthalpic interactions and conformational freedom that are specified by this residue. Our results implicate terminal residues in the biological function of an antimicrobial peptide. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

6.
Histatin‐5 (Hst‐5, DSHAKRHHGYKRKFHEKHHSHRGY) is a member of a histidine‐rich peptide family secreted by major salivary glands, exhibiting high fungicidal activity against Candida albicans. In the present work, we demonstrate the 3D structure of the head‐to‐tail cyclic variant of Hst‐5 in TFE solution determined using NMR spectroscopy and molecular dynamics simulations. The cyclic histatin‐5 reveals a helix‐loop‐helix motif with α‐helices at positions Ala4‐His7 and Lys11‐Ser20. Both helical segments are arranged relative to each other at an angle of ca. 142°. The head‐to‐tail cyclization increases amphipathicity of the peptide, this, however, does not affect its antimicrobial potency. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

7.
The EF‐hand motif (helix–loop–helix) is a Ca2+‐binding domain that is common among many intracellular Ca2+‐binding proteins. We applied Fourier‐transform infrared spectroscopy to study the synthetic peptide analogues of site III of rabbit skeletal muscle troponin C (helix E–loop–helix F). The 17‐residue peptides corresponding to loop–helix F (DRDADGYIDAEELAEIF), where one residue is substituted by the D ‐type amino acid, were investigated to disturb the α‐helical conformation of helix F systematically. These D ‐type‐substituted peptides showed no band at about 1555 cm?1 even in the Ca2+‐loaded state although the native peptide (L ‐type only) showed a band at about 1555 cm?1 in the Ca2+‐loaded state, which is assigned to the side‐chain COO? group of Glu at the 12th position, serving as the ligand for Ca2+ in the bidentate coordination mode. Therefore, helix F is vital to the interaction between the Ca2+ and the side‐chain COO? group of Glu at the 12th position. Implications of the COO? antisymmetric stretch and the amide‐I′ of the synthetic peptide analogues of the Ca2+‐binding sites are discussed. © 2012 Wiley Periodicals, Inc. Biopolymers 99: 342–347, 2013.  相似文献   

8.
Two analogs of the ten‐amino acid residue, membrane‐active lipopeptaibiotic trichogin GA IV, mono‐labeled with 4‐cyano‐α‐methyl‐L ‐phenylalanine, a potentially useful fluorescence and IR absorption probe of the local microenvironment, were synthesized by the solid‐phase methodology and conformationally characterized. The single modification was incorporated either at the N‐terminus (position 1) or near the C‐terminus (position 8) of the peptide main chain. In both cases, the replaced amino acid was the equally helicogenic α‐aminoisobutyric acid (Aib) residue. We performed a solution conformational analysis by use of FT‐IR absorption, CD, and 2D‐NMR spectroscopies. The results indicate that both labeled analogs essentially maintain the overall helical propensity of the naturally occurring lipopeptaibiotic. Peptide? membrane interactions were assessed by fluorescence and ATR‐IR absorption techniques. Analogies and differences between the two peptides were highlighted. Taken together, our data confirm literature results that some of the spectroscopic parameters of the 4‐cyanobenzyl chromophore are sensitive markers of the local microenvironment.  相似文献   

9.
Trichogin GA IV is a lipopeptaibol antibiotic characterized by the sequence nOct–Aib1–Gly–Leu–Aib4–Gly–Gly–Leu–Aib8–Gly–Ile–Lol (nOct: n‐octanoyl; Aib: α‐aminoisobutyric acid; Lol, leucinol), which exhibits membrane‐modifying properties. We synthesized step‐by‐step by solution methods three trichogin analogues, each with a single Aib → 2,2,6,6‐tetramethylpiperidin‐1‐oxyl‐4‐amino‐4‐carboxylic acid (TOAC) substitution. The similarity in the conformational propensities of the Cα‐tetrasubstituted α‐amino acids Aib and TOAC allowed us to exploit these analogues to investigate the orientation and therefore the mechanism of action of trichogin in the membranes by the electron spin resonance (ESR) technique. A conformational analysis by Fourier transform ir absorption and CD in different organic solvents and in a membrane‐mimetic environment indicated that the conformation of the natural lipopeptaibol remains almost unchanged in the three analogues. Moreover, for all of the analogues permeability measurements revealed membrane‐modifying properties comparable to those of trichogin. Our ESR investigation demonstrated that, in liposomes based on phosphatidylcholine, trichogin lays parallel to the membrane surface with its hydrophobic face oriented toward the membrane interior. These results suggest that trichogin might modify membrane permeability via a carpet‐like mechanism, at least in liposomes and in the absence of a transmembrane potential. © 1999 John Wiley & Sons, Inc. Biopoly 50: 239–253, 1999  相似文献   

10.
The N‐terminal 1–34 segments of both parathyroid hormone (PTH) and parathyroid hormone‐related protein (PTHrP) bind and activate the same membrane receptor in spite of major differences in their amino acid sequence. The hypothesis was made that they share the same bioactive conformation when bound to the receptor. A common structural motif in all bioactive fragments of the hormone in water/trifluoroethanol mixtures or in aqueous solution containing detergent micelles is the presence of two helical segments at the N‐ and C‐termini of the sequence. In order to stabilize the helical structures, we have recently synthesized and studied the PTHrP(1–34) analog [(Lys13–As p17, Lys26–As p30)]PTHrP(1–34)NH2, which contains lactam‐constrained Lys‐Asp side chains at positions i, i+4. This very potent agonist exhibits enhanced helix stability with respect to the corresponding linear peptide and also two flexible sites at positions 12 and 19 in 1:1 trifluoroethanol/water. These structural elements have been suggested to play a critical role in bioactivity. In the present work we have extended our conformational studies on the bicyclic lactam‐constrained analog to aqueous solution. By CD, 2D‐NMR and structure calculations we have shown that in water two helical segments are present in the region of the lactam bridges (13–18, and 26–31) with high flexibility around Gly12 and Arg19. Thus, the essential structural features observed in the aqueous‐organic medium are maintained in water even if, in this solvent, the overall structure is more flexible. Our findings confirm the stabilizing effect of side‐chain lactam constraints on the α‐helical structure. Copyright © 1999 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

11.
Clostridium histolyticum collagenase causes extensive degradation of collagen in connective tissue that results in gas gangrene. The C‐terminal collagen‐binding domain (CBD) of these enzymes is the minimal segment required to bind to a collagen fibril. CBD binds unidirectionally to the undertwisted C‐terminus of triple helical collagen. Here, we examine whether CBD could also target undertwisted regions even in the middle of the triple helix. Collageneous peptides with an additional undertwisted region were synthesized by introducing a Gly → Ala substitution [(POG)xPOA(POG)y]3, where x + y = 9 and x > 3). 1H–15N heteronuclear single quantum coherence nuclear magnetic resonance (HSQC NMR) titration studies with 15N‐labeled CBD demonstrated that the minicollagen binds to a 10 Å wide 25 Å long cleft. Six collagenous peptides each labeled with a nitroxide radical were then titrated with 15N‐labeled CBD. CBD binds to either the Gly → Ala substitution site or to the C‐terminus of each minicollagen. Small‐angle X‐ray scattering measurements revealed that CBD prefers to bind the Gly → Ala site to the C‐terminus. The HSQC NMR spectra of 15N‐labeled minicollagen and minicollagen with undertwisted regions were unaffected by the titration of unlabeled CBD. The results imply that CBD binds to the undertwisted region of the minicollagen but does not actively unwind the triple helix.  相似文献   

12.
Spin-labeled analogues of bradykinin (BK) were synthesized containing the amino acid TOAC (2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid) either before Arg1 (TOAC0-BK) or replacing Pro3 (TOAC3-BK). Whereas the latter is inactive, the former retains about 70% of BK's activity in isolated rat uterus. A combined electron paramagnetic resonance (EPR)-circular dichroism(CD) approach was used to examine the conformational propertiesof the peptides in the presence of membrane-mimetic systems (negatively charged sodium dodecyl sulfate, SDS, and zwitterionicN-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate, HPS). While the peptides bind to both monomeric and micellar SDS, no interaction occurs with HPS, evincing the contribution of electrostatic interactions. TOAC3-BK's EPR spectral lineshapes are broader than those of TOAC0-BK, indicating amore restricted degree of motion at position 3. Moreover, the motional freedom of both peptides decreased upon binding to SDS. BK and TOAC0-BK solution CD spectra indicate highly flexible conformations (possibly an equilibrium between rapidlyinterconverting forms), while TOAC3-BK's spectra correspondto a more ordered structure. SDS binding induces drastic changesin BK and TOAC0-BK spectra, indicating stabilization of similar folds. The micelle interface promotes a higher degree of secondary structure by favoring intramolecular hydrogen bonds. Incontrast, TOAC3-BK spectra remain essentially unchanged. These results are interpreted as due to TOAC's ring imposing a more constrained conformation. This rigidity is very likely responsible for the inability of TOAC3-BK to acquire the correct receptor-bound conformation, leading to loss of biological activity. On the other hand, the greater flexibility of TOAC0-BK and the similarity between its conformational behavior and that of the native hormone are probably related to their similar biological activity.  相似文献   

13.
Polcalcins are small EF‐hand proteins believed to assist in regulating pollen‐tube growth. Phl p 7, from timothy grass (Phleum pratense), crystallizes as a domain‐swapped dimer at low pH. This study describes the solution structures of the recombinant protein in buffered saline at pH 6.0, containing either 5.0 mM EDTA, 5.0 mM Mg2+, or 100 μM Ca2+. Phl p 7 is monomeric in all three ligation states. In the apo‐form, both EF‐hand motifs reside in the closed conformation, with roughly antiparallel N‐ and C‐terminal helical segments. In 5.0 mM Mg2+, the divalent ion is bound by EF‐hand 2, perturbing interhelical angles and imposing more regular helical structure. The structure of Ca2+‐bound Phl p 7 resembles that previously reported for Bet v 4—likewise exposing apolar surface to the solvent. Occluded in the apo‐ and Mg2+‐bound forms, this surface presumably provides the docking site for Phl p 7 targets. Unlike Bet v 4, EF‐hand 2 in Phl p 7 includes five potential anionic ligands, due to replacement of the consensus serine residue at –x (residue 55 in Phl p 7) with aspartate. In the Phl p 7 crystal structure, D55 functions as a helix cap for helix D. In solution, however, D55 apparently serves as a ligand to the bound Ca2+. When Mg2+ resides in site 2, the D55 carboxylate withdraws to a distance consistent with a role as an outer‐sphere ligand. 15N relaxation data, collected at 600 MHz, indicate that backbone mobility is limited in all three ligation states. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
The aim of this work was to examine the bioactivity and the conformational behavior of some gomesin (Gm) analogues in different environments that mimic the biological membrane/water interface. Thus, manual peptide synthesis was performed by the solid-phase method, antimicrobial activity was evaluated by a liquid growth inhibition assay, and conformational studies were performed making use of several spectroscopic techniques: CD, fluorescence and EPR. [TOAC1]-Gm; [TOAC1, Ser2,6,11,15]-Gm; [Trp7]-Gm; [Ser2,6,11,15, Trp7]-Gm; [Trp9]-Gm; and [Ser2,6,11,15, Trp9]-Gm were synthesized and tested. The results indicated that incorporation of TOAC or Trp caused no significant reduction of antimicrobial activity; the cyclic analogues presented a β-hairpin conformation similar to that of Gm. All analogues interacted with negatively charged SDS both above and below the detergent's critical micellar concentration (cmc). In contrast, while Gm and [TOAC1]-Gm required higher LPC concentrations to bind to micelles of this zwitterionic detergent, the cyclic Trp derivatives and the linear derivatives did not seem to interact with this membrane-mimetic system. These data corroborate previous results that suggest that electrostatic interactions with the lipid bilayer of microorganisms play an important role in the mechanism of action of gomesin. Moreover, the results show that hydrophobic interactions also contribute to membrane binding of this antimicrobial peptide.  相似文献   

15.
The N‐terminal 1–34 segments of both parathyroid hormone (PTH) and parathyroid hormone‐related protein (PTHrP) bind and activate the same membrane receptor in spite of major differences between the two hormones in their amino acid sequence. Recently, it was shown that in (1–34)PTH/PTHrP segmental hybrid peptides, the N‐terminal 1–14 segment of PTHrP is incompatible with the C‐terminal 15–34 region of PTH leading to substantial reduction in potency. The sites of incompatibility were identified as positions 5 in PTH and 19 in PTHrP. In the present paper we describe the synthesis, biological evaluation, and conformational characterization of two point‐mutated PTH/PTHrP 1–34 hybrids in which the arginine residues at positions 19 and 21 of the native sequence of PTHrP have been replaced by valine (hybrid V21) and glutamic acid (hybrid E19), respectively, taken from the PTH sequence. Hybrid V21 exhibits both high receptor affinity and biological potency, while hybrid E19 binds weakly and is poorly active. The conformational properties of the two hybrids were studied in aqueous solution containing dodecylphosphocholine (DPC) micelles and in water/2,2,2‐trifluoroethanol (TFE) mixtures. Upon addition of TFE or DPC micelles to the aqueous solution, both hybrids undergo a coil‐helix transition. The maximum helix content in 1 : 1 water/TFE, obtained by CD data for both hybrids, is ∼ 80%. In the presence of DPC micelles, the maximum helix content is ∼ 40%. The conformational properties of the two hybrids in the micellar system were further investigated by combined 2D‐nmr, distance geometry (DG), and molecular dynamics (MD) calculations. The common structural motif, consisting of two helical segments located at N‐ and C‐termini, was observed in both hybrids. However, the biologically potent hybrid V21 exhibits two flexible sites, centered at residues 12 and 19 and connecting helical segments, while the flexibility sites in the weakly active hybrid E19 are located at position 11 and in the sequence 20–26. Our findings support the hypothesis that the presence and location of flexibility points between helical segments are essential for enabling the active analogs to fold into the bioactive conformation upon interaction with the receptor. © 1999 John Wiley & Sons, Inc. Biopoly 50: 525–535, 1999  相似文献   

16.
Antimicrobial peptides are recognized candidates with pharmaceutical potential against epidemic emerging multi‐drug resistant bacteria. In this study, we use nuclear magnetic resonance spectroscopy and molecular dynamics simulations to determine the unknown structure and evaluate the interaction with dodecylphosphatidylcholine (DPC) and sodium dodecylsulphate (SDS) micelles with three W6‐Hylin‐a1 analogs antimicrobial peptides (HyAc, HyK, and HyD). The HyAc, HyK, and HyD bound to DPC micelles are all formed by a unique α‐helix structure. Moreover, all peptides reach the DPC micelles' core, which thus suggests that the N‐terminal modifications do not influence the interaction with zwiterionic surfaces. On the other hand, only HyAc and HyK peptides are able to penetrate the SDS micelle core while HyD remains always at its surface. The stability of the α‐helical structure, after peptide‐membrane interaction, can also be important to the second step of peptide insertion into the membrane hydrophobic core during permeabilization. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

17.
Summary Spin-labeled analogues of bradykinin (BK) were synthesized containing the amino acid TOAC (2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid) either before Arg1 (TOAC0-BK) or replacing Pro3 (TOAC3-BK). Whereas the latter is inactive, the former retains about 70% of BK's activity in isolated rat uterus. A combined electron paramagnetic resonance (EPR)-circular dichroism (CD) approach was used to examine the conformational properties of the peptides in the presence of membrane-mimetic systems (negatively charged sodium dodecyl sulfate, SDS, and zwitterionic N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate, HPS). While the peptides bind to both monomeric and micellar SDS, no interaction occurs with HPS, evincing the contribution of electrostatic interactions. TOAC3-BK's EPR spectral lineshapes are broader than those of TOAC0-BK, indicating a more restricted degree of motion at position 3. Moreover, the motional freedom of both peptides decreased upon binding to SDS. BK and TOAC0-BK solution CD spectra indicate highly flexible conformations (possibly an equilibrium between rapidly interconverting forms), while TOAC3-BK's spectra correspond to a more ordered structure. SDS binding induces drastic changes in BK and TOAC0-BK spectra, indicating stabilization of similar folds. The micelle interface promotes a higher degree of secondary structure by favoring intramolecular hydrogen bonds. In contrast. TOAC3-BK spectra remain essentially unchanged. These results are interpreted as due to TOAC's ring imposing a more constrained conformation. This rigidity is very likely responsible for the inability of TOAC3-BK to acquire the correct receptor-bound conformation leading to loss of biological activity, On the other hand, the greater flexibility of TOAC0-BK and the similarity between its conformational behavior and that of the native hormone are probably related to their similar biological activity.  相似文献   

18.
Summary An X-ray diffraction analysis of the [Fmoc0, TOAC4,8, Leu-OMe11]analogue of the lipopeptaibol antibiotic trichogin A Iv shows that the undecapeptide is folded in a right-handed, mixed α/310-helix. The helical molecules are connected in a head-to-tail arrangement along the b-axis through C=O...H-N intermolecular H-bonding. This packing mode generates a hydrophobic cavity where the Fmoc Nα-protecting groups are accommodated. The distances and angles between the nitroxide groups of the two TOAC residues, separated by one turn of the α-helix, have been determined.  相似文献   

19.
A series of terminally blocked peptides (to the pentamer level) from l ‐Ala and the cyclic Cα,α‐disubstituted Gly residue Afc and one Gly/Afc dipeptide have been synthesized by solution method and fully characterized. The molecular structure of the amino acid derivative Boc‐Afc‐OMe and the dipeptide Boc‐Afc‐Gly‐OMe were determined in the crystal state by X‐ray diffraction. In addition, the preferred conformation of all of the model peptides was assessed in deuterochloroform solution by FT‐IR absorption and 1H‐NMR. The experimental data favour the conclusion that the Afc residue tends to adopt either the fully‐extended (C5) or a folded/helical structure. In particular, the former conformation is highly populated in solution and is also that found in the crystal state in the two compounds investigated. A comparison with the structural propensities of the strictly related Cα,α‐disubstituted Gly residues Ac5c and Dϕg is made and the implications for the use of the Afc residue in conformationally constrained analogues of bioactive peptides are briefly examined. A spectroscopic (UV absorption, fluorescence, CD) characterization of this novel aromatic Cα,α‐disubstituted Gly residue is also reported. Copyright © 1999 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

20.
Young Kee Kang  In Kee Yoo 《Biopolymers》2014,101(11):1077-1087
Conformational preferences of 9‐ and 14‐helix foldamers have been studied for γ‐dipeptides of 2‐aminocyclohexylacetic acid (γAc6a) residues such as Ac‐(γAc6a)2‐NHMe ( 1 ), Ac‐(Cα‐Et‐γAc6a)2‐NHMe ( 2 ), Ac‐(γAc6a)2‐NHBn ( 3 ), and Ac‐(Cα‐Et‐γAc6a)2‐NHBn ( 4 ) at the M06‐2X/cc‐pVTZ//M06‐2X/6‐31 + G(d) level of theory to explore the influence of substituents on their conformational preferences. In the gas phase, the 9‐helix foldamer H9 and 14‐helix foldamer H14‐z are found to be most preferred for dipeptides 2 and 4 , respectively, as for dipeptides 1 and 3 , which indicates no remarkable influence of the Cα‐ethyl substitution on conformational preferences. The benzyl substitution at the C‐terminal end lead H14‐z to be the most preferred conformer for dipeptides 3 and 4 , whereas it is H9 for dipeptides 1 and 2 , which can be ascribed to the favored C? H···π interactions between the cyclohexyl group of the first residue and the C‐terminal benzyl group. There are only marginal changes in backbone structures and the distances and angles of H‐bonds for all local minima by Cα‐ethyl and/or benzyl substitutions. Although vibrational frequencies and intensities of the dipeptide 4 calculated at both M06‐2X/6‐31 + G(d) and M05‐2X/6‐31 + G(d) levels of theory are consistent with observed results in the gas phase, H14‐z is predicted to be most preferred by ΔG only at the former level of theory. Hydration did not bring the significant changes in backbone structures of helix foldamers for both dipeptide 1 and 4 . It is expected that the different substitutions at the C‐terminal end lead to the different helix foldamers, which may increase the resistance of helical structures to proteolysis and provide the more surface to the helical structures suitable for molecular recognition. © 2014 Wiley Periodicals, Inc. Biopolymers 101: 1077–1087, 2014.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号