首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Motose H  Fukuda H  Sugiyama M 《Planta》2001,213(1):121-131
The transdifferentiation of isolated mesophyll cells of zinnia (Zinnia elegans L.) into tracheary elements (TEs) has been well studied as a model of plant cell differentiation. In order to investigate intercellular communication in this phenomenon, two types of culture method were developed, in which mesophyll cells were embedded in a thin sheet of agarose gel and cultured on solid medium, or embedded in microbeads of agarose gel and cultured in liquid medium. A statistical analysis of the two-dimensional distribution of TEs in the thin-sheet cultures demonstrated their aggregation. In the microbead cultures, the frequency of TE differentiation was shown to depend on the local cell density (the cell density in each microbead): TE differentiation required local cell densities of more than 105 cells ml−1. These results suggest that TE differentiation involves cell-cell communication mediated by a locally acting diffusible factor. This presumptive factor was characterized by applying a modified version of the sheet culture, which used two sheets of different cell densities, a low-density sheet and a high-density sheet. Differentiation of TEs in the former could be induced only by bringing it into contact with the latter. Insertion of a 25-kDa-cutoff membrane between the high-density and low-density sheets severely suppressed such induction of TEs in the low-density sheet while a 300-kDa-cutoff membrane suppressed induction only slightly. Insertion of agarose sheets containing immobilized pronase E or trypsin also interfered with the induction of TEs in the low-density sheets. Thus, a proteinaceous macromolecule of 25–300 kDa in molecular weight was assumed to mediate the local intercellular communication required for TE differentiation. This substance was designated “xylogen” with reference to its xylogenic activity. The time of requirement for xylogen during TE differentiation was assessed by experiments in which cells in the low-density sheet were separated from xylogen produced in the high-density sheet at various times by insertion of a 25-kDa-cutoff membrane between the two sheets, and was estimated to be from the 36th hour to the 60th hour of culture (12–36 h before visible thickening of secondary cell walls of TEs). Received: 13 July 2000 / Accepted: 4 October 2000  相似文献   

2.
Changes in the enzymatic activity of cinnamyl alcohol dehydrogenase (CAD) and in the expression of a gene for CAD during tracheary element (TE) differentiation were investigated in cultures of single cells isolated from the mesophyll of zinnia (Zinnia elegans). In cultures in which TE differentiation was induced (TE-inductive cultures), CAD activity increased from h 36 after the start of culture (12 h before the start of thickening of the secondary cell wall) and peaked at h 72, when lignin was actively being deposited. In control cultures in which TE differentiation was not induced, CAD activity remained at a very low level for 5 d. Some isoforms of CAD were detected only in the TE-inductive cultures by native gel electrophoresis and subsequent staining for CAD activity. A cDNA clone for CAD, ZCAD1, was isolated from Z. elegans using a cDNA clone for CAD from Aralia cordata as the probe. RNA gel-blot analysis revealed that in the TE-inductive cultures the level of ZCAD1 mRNA increased from h 36 and peaked at h 48 to 60. No such increases were observed in control cultures. These results indicated that both the gene expression and the activity of CAD are strictly regulated, in association with lignification, during TE differentiation in Z. elegans.  相似文献   

3.
To determine whether proteasome activity is required for tracheary element (TE) differentiation, the proteasome inhibitors clasto-lactacystin β-lactone and carbobenzoxy-leucinyl-leucinyl-leucinal (LLL) were used in a zinnia (Zinnia elegans) mesophyll cell culture system. The addition of proteasome inhibitors at the time of culture initiation prevented differentiation otherwise detectable at 96 h. Inhibition of the proteasome at 48 h, after cellular commitment to differentiation, did not alter the final percentage of TEs compared with controls. However, proteasome inhibition at 48 h delayed the differentiation process by approximately 24 h, as indicated by examination of both morphological markers and the expression of putative autolytic proteases. These results indicate that proteasome function is required both for induction of TE differentiation and for progression of the TE program in committed cells. Treatment at 48 h with LLL but not clasto-lactacystin β-lactone resulted in partial uncoupling of autolysis from differentiation. Results from gel analysis of protease activity suggested that the observed incomplete autolysis was due to the ability of LLL to inhibit TE cysteine proteases.  相似文献   

4.
In maturation process of tracheary element (TE) differentiation, many hydrolases are activated to execute programmed cell death of TEs. Such hydrolases are released from maturing TEs into extracellular space. The release of hydrolases should be harmful to surrounding cells. The TED4 protein, a tentative plant non-specific lipid transfer protein that is expressed preferentially in TE-induced culture of zinnia (Zinnia elegans L.), is secreted into the apoplastic space prior to and associated with morphological changes of TEs. Our studies on the interrelationship between the TED4 protein and proteolytic activities using an in vitro TE differentiation system of zinnia revealed the following facts. (1) Active proteasome is released into medium at maturation stage of TE differentiation. (2) The TED4 protein forms a complex with proteasome in culture medium. (3) The TED4 protein inhibits proteasome activity in the medium and crude extracts of zinnia cells. (4) The depletion of the TED4 protein from culture medium results in an increase in mortality of other living cells. These results strongly suggest that the secreted TED4 protein acts as an inhibitor of proteasome to protect other cells from undesirable injury due to proteolytic activities exudated from dying TEs.  相似文献   

5.
The zinnia (Zinnia elegans) mesophyll cell culture tracheary element (TE) system was used to study proteinases active during developmentally programmed cell death. Substrate-impregnated gels and single-cell assays revealed high levels of proteinase activity in differentiating TEs compared with undifferentiated cultured cells and expanding leaves. Three proteinases (145, 28, and 24 kD) were exclusive to differentiating TEs. A fourth proteinase (59 kD), although detected in extracts from all tissues examined, was most active in differentiating TEs. The 28- and 24-kD proteinases were inhibited by thiol proteinase inhibitors, leupeptin, and N-[N-(L-3-trans-carboxirane-2-carbonyl)-L-leucyl]-agmatine (E-64). The 145- and 59-kD proteinases were inhibited by the serine proteinase inhibitor phenylmethylsulfonyl fluoride (PMSF). Extracts from the TE cultures contained sodium dodecyl sulfate-stimulated proteolytic activity not detected in control cultures. Sodium dodecyl sulfate-stimulated proteolysis was inhibited by leupeptin or E-64, but not by PMSF. Other tissues, sucrose-starved cells and cotyledons, that contain high levels of proteolytic activity did not contain TE-specific proteinases, but did contain higher levels of E-64-sensitive activities migrating as 36- to 31-kD enzymes and as a PMSF-sensitive 66-kD proteinase.  相似文献   

6.
7.
Xylogenic cultures of zinnia (Zinnia elegans) provide a unique opportunity to study signaling pathways of tracheary element (TE) differentiation. In vitro TEs differentiate into either protoxylem (PX)-like TEs characterized by annular/helical secondary wall thickening or metaxylem (MX)-like TEs with reticulate/scalariform/pitted thickening. The factors that determine these different cell fates are largely unknown. We show here that supplementing zinnia cultures with exogenous galactoglucomannan oligosaccharides (GGMOs) derived from spruce (Picea abies) xylem had two major effects: an increase in cell population density and a decrease in the ratio of PX to MX TEs. In an attempt to link these two effects, the consequence of the plane of cell division on PX-MX differentiation was assessed. Although GGMOs did not affect the plane of cell division per se, they significantly increased the proportion of longitudinally divided cells differentiating into MX. To test the biological significance of these findings, we have determined the presence of mannan-containing oligosaccharides in zinnia cultures in vitro. Immunoblot assays indicated that beta-1,4-mannosyl epitopes accumulate specifically in TE-inductive media. These epitopes were homogeneously distributed within the thickened secondary walls of TEs when the primary cell wall was weakly labeled. Using polysaccharide analysis carbohydrate gel electrophoresis, glucomannans were specifically detected in cell walls of differentiating zinnia cultures. Finally, zinnia macroarrays probed with cDNAs from cells cultured in the presence or absence of GGMOs indicated that significantly more genes were down-regulated rather than up-regulated by GGMOs. This study constitutes a major step in the elucidation of signaling mechanisms of PX- and MX-specific genetic programs in zinnia.  相似文献   

8.
The regulation of the membrane mobility of glycoconjugates in human polymorphonuclear leukocytes (PMNL) was studied by comparing adult PMNL with promyelocytic HL60 cells before and after stimulation of differentiation in HL60 cells with phorbol-myristate acetate (PMA) with respect to lateral diffusion of wheat germ agglutinin (WGA)-labeled glycoconjugates. For this purpose we developed a novel variant of microscope equipment for the study of fluorescence recovery after photobleaching (FRAP) and continuous fluorescence microphotolysis (CFM) using a mini-computer for handling of shutters, data acquisition, and calculations. This equipment is presented in the report. We found that PMA-induced differentiation in HL60 cells reduced the lateral diffusion coefficient (D) of WGA-labeled membrane entities from about 1.5 to 1.0 x 10(-10) cm2/s, which was close to that found for adult blood PMNL, i.e., 1-1.2 x 10(-10) cm2/s. The lateral mobility (D x 10(10)) of succinylated WGA (S-WGA) was 2.3 and 1.7 cm2/s in undifferentiated and PMA-differentiated HL60 cells, respectively, indicating that WGA might have cross-linked membrane receptors, resulting in the slower diffusion. The results are discussed in relation to the effect of phagocyte maturation on the mobility of membrane components.  相似文献   

9.
Glycolate oxidase (EC 1.1.3.15) activity was detected both in the bundle sheath (79%) and mesophyll (21%) tissues of maize leaves. Three peaks of glycolate oxidase activity were separated from maize leaves by the linear KCl gradient elution from the DEAE-Toyopearl column. The first peak corresponded to the glycolate oxidase isoenzyme located in the bundle sheath cells, the second peak had a dual location and the third peak was related to the mesophyll fraction. The mesophyll isoenzyme showed higher affinity for glycolate (Km 23 micromol x L(-1)) and a higher pH optimum (7.5-7.6) as compared to the bundle sheath isoenzyme (Km 65 micromol x L(-1), pH optimum 7.3). The bundle sheath isoenzyme was strongly activated by isocitrate and by succinate while the mesophyll isoenzyme was activated by isocitrate only slightly and was inhibited by succinate. It is concluded that although the glycolate oxidase activity is mainly attributed to the bundle sheath, conversion of glycolate to glyoxylate occurs also in the mesophyll tissue of C4 plant leaves.  相似文献   

10.
11.
Differentiation into a tracheary element (TE) is a typical example of programmed cell death (PCD) in the developmental processes of vascular plants. In the PCD process the TE degrades its cellular contents and becomes a hollow corpse that serves as a water conduct. Using a zinnia (Zinnia elegans) cell culture we obtained serial observations of single living cells undergoing TE PCD by confocal laser scanning microscopy. Vital staining was performed and the relative fluorescence intensity was measured, revealing that the tonoplast of the swollen vacuole in TEs loses selective permeability of fluorescein just before its physical rupture. After the vacuole ruptured the nucleus was degraded rapidly within 10 to 20 min. No prominent chromatin condensation or nuclear fragmentation occurred in this process. Nucleoids in chloroplasts were also degraded in a similar time course to that of the nucleus. Degradations did not occur in non-TEs forced to rupture the vacuole by probenecid treatment. These results demonstrate that TE differentiation involves a unique type of PCD in which active and rapid nuclear degradation is triggered by vacuole rupture.  相似文献   

12.
Shi Y  Hu H  Ma R  Cong W  Cai Z 《Biotechnology letters》2004,26(9):747-751
The maximum growth rate (1.4-2 x 10(5) cells ml(-1) d(-1)), cell final yields (2.6-5.2 x 10(5) cells ml(-1)) and extracellular alkaline phosphatase activity (2.4-10.6 microg phosphate released ml(-1) h(-1)) of the red tide alga, Skeletonema costatum, increased when Zn2+ was increased from 0 to 24 pM, but decreased with 66 pM Zn2+ in growth medium with glycerophosphate as the sole phosphorus source. Extracellular carbonic anhydrase activity and the affinity for HCO3- and CO2 uptake increased when Zn2+ was increased from 0 to 12 pM, but then decreased at higher concentrations. The results suggested that utilization of organic phosphate required more Zn2+ than the uptake of inorganic carbon did, while utilization of dissolved inorganic carbon by Skeletonema costatum was very sensitive to Zn2+ concentration variations.  相似文献   

13.
Human immunodeficiency virus (HIV) infection is associated with a surprisingly high frequency of myocardial dysfunction. Potential mechanisms include direct effects of HIV, indirect effects mediated by cytokines, or a combination. We have previously reported that interleukin-1beta (IL-1beta) (500 U/ml) alone induced nitric oxide (NO) production by neonatal rat cardiac myocytes (CM). Effects of the HIV-1 envelope, glycoprotein120 (gp120), on inducible NO synthase (iNOS) in CM have not been previously reported. Unlike IL-1beta, recombinant HIV-gp120 (1 microgram/ml) alone failed to enhance NO production in CM (0.5 +/- 0.4 vs. 0.4 +/- 0.5 micromol/1.25 x 10(5) cells/48 h, gp120 vs. control, respectively; n = 12, P = not significant). However, the addition of gp120 to IL-1beta significantly enhanced iNOS mRNA expression (70 +/- 1.5 vs. 26 +/- 2.4 optical units, IL-1beta + gp120 vs. IL-1beta, respectively; n = 3), iNOS protein synthesis (42 +/- 1.4 vs. 18 +/- 0.8 optical units, IL-1beta + gp120 vs. IL-1beta, respectively; n = 3), and NO production (NO(2)(-)) (6.6 +/- 0.6 vs. 4.1 +/- 0.8 micromol/1.25 x 10(5) cells/48 h, IL-1beta + gp120 vs. IL-1beta, respectively; n = 12, P 相似文献   

14.
Dahiya P  Findlay K  Roberts K  McCann MC 《Planta》2006,223(6):1281-1291
The vascular cylinder of the mature stem of Zinnia elegans cv Envy contains two anatomically distinct sets of vascular bundles, stem bundles and leaf-trace bundles. We isolated a full-length cDNA of ZeFLA11, a fasciclin-domain-containing gene, from a zinnia cDNA library derived from in vitro cultures of mesophyll cells induced to form tracheary elements. Using RNA in situ hybridization, we show that ZeFLA11 is expressed in the differentiating xylem vessels with reticulate type wall thickenings and adjacent parenchyma cells of zinnia stem bundles, but not in the leaf-trace bundles that deposit spiral thickenings. Our results suggest a function for this cell-surface GPI-anchored glycoprotein in secondary wall deposition during differentiation of metaxylem tissue with reticulate vessels.  相似文献   

15.
16.
We investigated the relationship between the cellular redox state of GSH or GSSG and tracheary element (TE) differentiation using a Zinnia experimental system, in which isolated mesophyll cells transdifferentiate to TEs. TE differentiation was suppressed by the application of L-buthionine sulfoximine (BSO), a potent inhibitor of GSH biosynthesis, at the early stage of cell culture. Application of GSSG at the early culture stage promoted the differentiation, but that of GSH or GSSG at an advanced period of culture suppressed the differentiation. Application of GSH and GSSG nullified the TE differentiation-suppressing effect of BSO. The results suggest that changes in the redox states of GSH and GSSG have a role in TE differentiation.  相似文献   

17.
Mechanically isolated mesophyll cells of Zinnia elegans differentiate into tracheary elements (TEs) when cultured in a medium containing adequate auxin and cytokinin. Differentiation in this culture system is relatively synchronous, rapid (occuring within 3 days of cell isolation) and efficient (with up to 65% of the mesophyll cells differentiating into TEs), and does not require prior mitosis. The Zinnia system has been used to investigate (a) cytological and ultrastructural changes occurring during TE differentiation, such as the reorganization of microtubules controlling secondary wall deposition, (b) the influences of calcium and of various plant hormones and antihormones on TE differentiation, and (c) biochemical changes during differentiation, including those occurring during secondary wall deposition, lignification and autolysis. This review summarizes experiments in which the Zinnia system has served as a model for the study of TE differentiation.  相似文献   

18.
In a bioassay-guided drug screening for anti-osteoporosis activity, eight flavonol glycosides were isolated from Epimedium koreanum Nakai, which is traditionally widely used in China for the treatment of impotence and osteoporosis. The effects of total flavonoids and flavonol glycosides on the proliferation and differentiation of rat calvarial osteoblast-like cells were evaluated by the MTT method and measuring the activity of alkaline phosphatase (ALP activity). Total flavonoids (1.2 x10(-2) to 6.0 x10(-7) mg/ml) and flavonol glycosides (2.0 x10(-5) to 1.0 x10(-9) mol/l) exhibited a strong inhibition on the proliferation of primary osteoblasts at most concentrations. However, the total flavonoids and icariin significantly promoted the differentiation of primary osteoblasts. The results suggested that flavonoids from E. koreanum Nakai may improve the development of osteoblasts by promoting the ALP activity; and icariin might be one of the active constituents facilitating the differentiation of osteoblasts.  相似文献   

19.
The effects of high and fluctuating pressure up to 220 bar on microbial growth and activity were determined in a pilot-scale water hydraulic system. An increase in the pipeline pressure from 70 to 220 bar decreased the total and the viable cell number in the pressure medium from 2.2(+/-0.5)x10(5) to 4.9(+/-1.5)x10(4) cells/ml and from 5.7(+/-2.8)x10(4) to 1.3(+/-0.7)x10(4) cfu/ml, respectively. Microbial attachment in the non-pressurised tank of the hydraulic system increased with increasing pipeline pressure [from 1.0(+/-0.3) to 3.8(+/-2.7)x10(5) cells/cm(2) on stainless steel]. The phosphatase, aminopeptidase and beta-glucosidase activities in the pressurised medium were between 0.02 and 1.4 micromol/lh ( V(max)) and decreased in response to increasing pipeline pressure. The alpha-glucosidase activity was detected only at 70 bar and the glucuronidase activity only occasionally. Based on principal component and cluster analyses, both the pressure applied and the original filling water quality affected substrate utilisation patterns. This study demonstrated the capability of freshwater bacteria to tolerate high and fluctuating pressure in a technical water system. Microbial survival was due to attachment and growth on the surfaces of the non-pressurised components and the nutrient flux released by cell lysis in the pressurised components. In summary, high pressures in water hydraulic systems do not prevent potential microbiologically related operational problems.  相似文献   

20.
Mesophyll cells isolated from Zinnia elegans L. cv. Canary Bird were cultured for 96 h in a liquid medium containing 0.1 mg l-1 -naphthaleneacetic acid and 1 mg l-1 benzyladenine in which both differentiation of tracheary elements (TE) and cell division were induced, or in a medium containing 0.1 mg l-1 -naphthaleneacetic acid and 0.001 mg l-1 benzyladenine, in which cell division was induced but TE differentiation was not. Lignification was found to occur only in the former medium, fairly synchronously after 76 h of culture, 5 h later than the onset of visible secondary wall thickening. Changes in the soluble phenolics were not correlated with TE differentiation. Of three important enzymes which have been reported to play a role in TE differentiation, the activity of phenylalanine ammonia-lyase (EC 4.3.1.5) in the TE-inductive culture was higher than that in the control culture between 72 and 96 h of culture, when TE differentiation progressed and lignin was synthesized actively. O-Methyltransferase (EC 2.1.1.6) activity was higher in the control culture than in the TE-inductive culture, indicating that this enzyme was not a marker enzyme of TE differentiation. The activities of peroxidases (EC 1.11.1.7), one extractable and the other nonextractable, with CaCl2 from the cell walls, reached peaks at 72 h (just before lignification) and 84 h of culture (active lignin synthesis), respectively, in the TE-inductive culture only, whereas the activity of soluble peroxidase showed a similar pattern of increase in the TE-inductive to the control culture. These results indicate that phenylalanine ammonia-lyase and peroxidase bound to the cell walls can be marker proteins for the differentiation of TE.Abbreviations OMT O-methyltransferase - PO peroxidase - PAL phenylalanine ammonia-lyase - TE tracheary element(s)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号