首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pseudomonas exotoxin A is composed of three structural domains that mediate cell recognition (I), membrane translocation (II), and ADP-ribosylation (III). Within the cell, the toxin is cleaved within domain II to produce a 37-kDa carboxyl-terminal fragment, containing amino acids 280-613, which is translocated to the cytosol and causes cell death. In this study, we constructed a mutant protein (PE37), composed of amino acids 280-613 of Pseudomonas exotoxin A, which does not require proteolysis to translocate. PE37 was targeted specifically to cells with epidermal growth factor receptors by inserting transforming growth factor-alpha (TGF-alpha) after amino acid 607 near the carboxyl terminus of Pseudomonas exotoxin A. PE37/TGF-alpha was very cytotoxic to cells with epidermal growth factor receptors. It was severalfold more cytotoxic than a derivative of full-length Pseudomonas exotoxin A containing TGF-alpha in the same position, probably because the latter requires intracellular proteolytic processing to exhibit its cytotoxicity, and proteolytic processing is not 100% efficient. Deletion of 2, 4, or 7 amino acids from the amino terminus of PE37/TGF-alpha greatly diminished cytotoxic activity, indicating the need for a proper amino-terminal sequence. In addition, a mutant containing an internal deletion of amino acids 314-380 was minimally active, indicating that other regions of domain II are also required for the cytotoxic activity of Pseudomonas exotoxin A.  相似文献   

2.
Pseudomonas exotoxin (PE) was incubated with cells and extracts analyzed for processed fragments. PE was proteolytically cleaved to produce a N-terminal 28-kDa and a C-terminal 37-kDa fragment, the latter being composed of a portion of domain II and all of domain III (the ADP-ribosylating domain). Cleavage was evident at 10 min after toxin addition and endosome preparations contained the processed fragments. Initially, the two fragments were linked by a disulfide bond. Subsequently, the 37-kDa fragment was reduced and translocated to the cytosol where it inactivated protein synthesis. Cytosol from toxin-treated cells was greatly enriched in the 37-kDa fragment. The 37-kDa fragment appears to be essential for toxicity since mutant PE molecules that do not produce this fragment, or cannot deliver it to the cytosol, fail to kill cells.  相似文献   

3.
Pseudomonas exotoxin (PE) is a three-domain toxin which is cleaved by a cellular protease within cells and then reduced to generate two prominent fragments (Ogata, M., Chaudhary, V. K., Pastan, I., and FitzGerald, D. J. (1990) J. Biol. Chem. 265, 20678-20685). The N-terminal fragment is 28 kDa in size and contains the binding domain. The 37-kDa C-terminal fragment, which translocates to the cytosol, contains the translocation domain and the ADP-ribosylation domain. Cleavage followed by reduction is essential for toxicity since mutant forms of the toxin that cannot be cleaved by cells are nontoxic. Previous results with these mutants suggest that cleavage occurred in an arginine-rich (arginine residues are at positions 274, 276, and 279) disulfide loop near the beginning of the translocation domain, but the exact site of cleavage was not determined. Since very few molecules of the 37-kDa fragment are generated within cells it was not possible to determine the site of cleavage by performing a conventional N-terminal sequence analysis of the 37-kDa fragment. Two experimental approaches were used to overcome this limitation. First, existing amino acids near the cleavage sites were replaced with methionine residues; this was followed by the addition of [35S]methionine-labeled versions of these toxins to cells. The pattern of radioactive toxin fragments recovered from the cells indicated that the toxin was cleaved either just before or just after Arg279. Second, [3H]leucine-labeled toxin was produced and added to the cells. Sequential Edman degradations were performed on the small amount of radioactive 37-kDa fragment that could be recovered from toxin-treated cells. A peak of radioactivity in the fifth fraction indicated that leucine was the 5th amino acid on the C-terminal side of the cleavage site. This result confirmed that cleavage was between Arg279 and Gly280.  相似文献   

4.
Pseudomonas exotoxin A (PE) is a single polypeptide chain that contains 613 amino acids and is arranged into three major structural domains. Domain Ia is responsible for cell recognition, domain II for translocation of PE across the membrane, and domain III for ADP-ribosylation of elongation factor 2. Recombinant PE can be produced in Escherichia coli and is efficiently secreted into the periplasm when an OmpA signal sequence is present. To investigate the role of the amino acids located on the surface of domain II in the action of the toxin against mammalian cells, we substituted alanine for each of the 27 surface amino acids present in domain II. Surprisingly, all 27 mutant proteins had some alteration in cytotoxicity when tested on human A431 or MCF7 cells or mouse L929 cells. Native PE has a compact structure and therefore is relatively protease resistant and very little ADP-ribosylation activity is detected in the absence of the denaturing agents like urea and dithiothreitol. Several of the mutations resulted in altered protease sensitivity of the toxin. Seven of the mutant molecules exhibited ADP-ribosylation activity without urea and dithiothreitol, indicating they are partially unfolded. Out of these seven mutants, six had increased cytotoxic activity on at least one of the target cell lines and the other retained its native cytotoxic potency.  相似文献   

5.
Clostridium difficile toxin B (269 kDa) is one of the causative agents of antibiotic-associated diarrhea and pseudomembranous colitis. Toxin B acts in the cytosol of eukaryotic target cells where it inactivates Rho GTPases by monoglucosylation. The catalytic domain of toxin B is located at the N terminus (amino acid residues 1-546). The C-terminal and the middle region of the toxin seem to be involved in receptor binding and translocation. Here we studied whether the full-length toxin or only a part of the holotoxin is translocated into the cytosol. Vero cells were treated with recombinant glutathione S-transferase-toxin B, and thereafter, toxin B fragments were isolated by affinity precipitation of the glutathione S-transferase-tagged protein from the cytosolic fraction of intoxicated cells. The toxin fragment (approximately 65 kDa) was recognized by an antibody against the N terminus of toxin B and was identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis as the catalytic domain of toxin B. The toxin fragment located in the cytosol possessed glucosyltransferase activity that could modify RhoA in vitro, but it was not able to intoxicate intact cells. After treatment of Vero cells with a radiolabeled fragment of toxin B (amino acid residues 547-2366), radioactivity was identified in the membrane fraction of Vero cells but not in the cytosolic fraction of Vero cells. Furthermore, analysis of cells by fluorescence microscopy revealed that the C terminus of toxin B was located in endosomes, whereas the N terminus was detected in the cytosol. Protease inhibitors, which were added to the cell medium, delayed intoxication of cells by toxin B and pH-dependent translocation of the toxin from the cell surface across the cell membrane. The data indicate that toxin B is proteolytically processed during its cellular uptake process.  相似文献   

6.
Pseudomonas exotoxin A (PE) is a protein toxin composed of three structural domains. Functional analysis of PE has revealed that domain I is the cell-binding domain and that domain III functions in ADP ribosylation. Domain II was originally designated as the translocation domain, mediating the transfer of domain III to the cytosol, because mutations in this domain result in toxin molecules with normal cell-binding and ADP-ribosylation activities but which are not cytotoxic. However, the results do not rule out the possibility that regions of PE outside of domain II also participate in the translocation process. To investigate this problem, we have now constructed a toxin in which domain III of PE is replaced with barnase, the extracellular ribonuclease of Bacillus amyloliquefaciens. This chimeric toxin, termed PE1-412-Bar, is cytotoxic to a murine fibroblast cell line and to a murine hybridoma resistant to the ADP-ribosylation activity of PE. A mutant form of PE1-412-Bar with an inactivating mutation in domain II at position 276 was significantly less toxic. Because the cytotoxic effect of PE1-412-Bar was due to the ribonuclease-activity of barnase molecules which had been translocated to the cytosol, we conclude that domain II of PE is not only essential but also probably sufficient to carry out the translocation process.  相似文献   

7.
To be toxic for mammalian cells, Pseudomonas exotoxin (PE) requires proteolytic cleavage between Arg-279 and Gly-280. Cleavage, which is mediated by the cellular protease furin, generates an active C-terminal fragment which translocates to the cytosol and inhibits protein synthesis. In vitro , furin-mediated cleavage is optimal at pH 5.5 with a relatively slow turnover rate. Within cells, only 5–10% of cell-associated PE is cleaved. To investigate the reasons for this inefficient cleavage, the amino acid composition near the cleavage site was altered to resemble more closely the arginine-rich sequence from the functionally similar region of diphtheria toxin (DT). Four PE-DT mutants were generated, whereby 1, 5, 6 or 8 amino acids at the PE-cleavage site were changed to amino acids found at the DT-cleavage site. Mutant proteins were expressed in Escherichia coli , purified and then analysed for their susceptibility to cleavage by furin and trypsin, susceptibility to cell-mediated cleavage, and cytotoxic activity relative to wild-type PE. At pH 5.5, the rate of both furin-mediated cleavage and trypsin-mediated cleavage increased dramatically when amino acids in PE were altered to resemble the DT sequence. This increase did not alter the pH optimum for furin-mediated cleavage of PE toxins, which remained at pH 5.0–5.5. When radioactive versions of selected PE-DT proteins were added to intact cells, an increase in the percentage of molecules that were cleaved relative to wild-type PE was also seen. However, changes that favoured increased proteolysis apparently interfered with other important toxin functions because none of the PE-DT proteins exhibited enhanced toxicity for cells when compared with the activity of wild-type PE.  相似文献   

8.
《BBA》1986,850(1):146-155
When the NaCl extract from spinach Photosystem II particles was dialyzed against a low-salt medium, the 18-kDa protein slowly degraded to a fragment of 17 kDa. This observation suggests that a proteinase previously associated with the Photosystem II particles in a latent form was activated by dissociation with NaCl. The 18-kDa protein and the 17-kDa fragment were purified, and their N-terminal amino acid sequences and total amino acid compositions were determined. These results determined 44 amino acid residues at the N-terminal of the 18-kDa protein, and suggest that 12 amino acid residues (mostly hydrophobic) at the N-terminal were lost by the degradation. The 18-kDa protein could rebind to the NaCl-treated and 24-kDa protein-supplemented Photosystem II particles and sustain their oxygen-evolution activity in a low-Cl medium, whereas the 17-kDa fragment had lost these abilities. These observations suggest that the N-terminal region of the 18-kDa protein forms a domain which binds to Photosystem II particles.  相似文献   

9.
TGF alpha-PE40 is a chimeric toxin made by replacing domain Ia of Pseudomonas exotoxin (PE) with transforming growth factor alpha (TGF alpha). We have now replaced a portion of domain Ib of PE with different polypeptides or an extra domain III of PE in transforming growth factor alpha-PE40 and maintained cell killing. Thus, TGF alpha-PE40 can be used to transport foreign protein sequences into the cytosol of cells.  相似文献   

10.
A chitinase gene was cloned on a 2.8-kb DNA fragment from Stenotrophomonas maltophilia strain 34S1 by heterologous expression in Burkholderia cepacia. Sequence analysis of this fragment identified an open reading frame encoding a deduced protein of 700 amino acids. Removal of the signal peptide sequence resulted in a predicted protein that was 68 kDa in size. Analysis of the sequence indicated that the chitinase contained a catalytic domain belonging to family 18 of glycosyl hydrolases. Three putative binding domains, a chitin binding domain, a novel polycystic kidney disease (PKD) domain, and a fibronectin type III domain, were also identified within the sequence. Pairwise comparisons of each domain to the most closely related sequences found in database searches clearly demonstrated variation in gene sources and the species from which related sequences originated. A 51-kDa protein with chitinolytic activity was purified from culture filtrates of S. maltophilia strain 34S1 by hydrophobic interaction chromatography. Although the protein was significantly smaller than the size predicted from the sequence, the N-terminal sequence verified that the first 15 amino acids were identical to the deduced sequence of the mature protein encoded by chiA. Marker exchange mutagenesis of chiA resulted in mutant strain C5, which was devoid of chitinolytic activity and lacked the 51-kDa protein in culture filtrates. Strain C5 was also reduced in the ability to suppress summer patch disease on Kentucky bluegrass, supporting a role for the enzyme in the biocontrol activity of S. maltophilia.  相似文献   

11.
Reduction of furin-nicked Pseudomonas exotoxin A: an unfolding story   总被引:3,自引:0,他引:3  
McKee ML  FitzGerald DJ 《Biochemistry》1999,38(50):16507-16513
Upon entering mammalian cells, Pseudomonas exotoxin A (PE) is proteolytically processed by furin to produce an N-terminal fragment of 28 kDa and a C-terminal fragment of 37 kDa. Cleavage is followed by the reduction of a key disulfide bond (cysteines 265-287). This combination of proteolysis and reduction releases the 37 kDa C-terminal fragment, which then translocates to the cytosol where it ADP-ribosylates elongation factor 2 and inhibits protein synthesis. To investigate toxin reduction, furin-nicked PE or a hypercleavable mutant, PEW281A, was subjected to various treatments and then analyzed for fragment production. Reduction was evident only when unfolding conditions and a reducing agent were applied. Thermal unfolding of PE, as evidenced by changes in alpha-helical content and increased sensitivity to trypsin, rendered nicked toxin susceptible to protein disulfide isomerase- (PDI-) mediated reduction. When subcellular fractions from toxin-sensitive cells were incubated with nicked PE, toxin unfolding and reducing activities were present in the membrane fraction but not the soluble fraction. These data indicate that PE reduction is a two-step process: unfolding that allows access to the Cys265-287 disulfide bond, followed by reduction of the sulfur-sulfur bond by PDI or a PDI-like enzyme. With regard to cellular processing, we propose that the toxin's three-dimensional structure retains a "closed" conformation that restricts solvent access to the Cys265-287 disulfide bond until after a cell-mediated unfolding event.  相似文献   

12.
The action of Clostridium difficile toxins A and B depends on processing and translocation of the catalytic glucosyltransferase domain into the cytosol of target cells where Rho GTPases are modified. Here we studied the processing of the toxins. Dithiothreitol and beta-mercaptoethanol induced auto-cleavage of purified native toxin A and toxin B into approximately 250/210- and approximately 63-kDa fragments. The 63-kDa fragment was identified by mass spectrometric analysis as the N-terminal glucosyltransferase domain. This cleavage was blocked by N-ethylmaleimide or iodoacetamide. Exchange of cysteine 698, histidine 653, or aspartate 587 of toxin B prevented cleavage of full-length recombinant toxin B and of an N-terminal fragment covering residues 1-955 and inhibited cytotoxicity of full-length toxin B. Dithiothreitol synergistically increased the effect of myo-inositol hexakisphosphate, which has been reported to facilitate auto-cleavage of toxin B (Reineke, J., Tenzer, S., Rupnik, M., Koschinski, A., Hasselmayer, O., Schrattenholz, A., Schild, H., and Von Eichel-Streiber, C. (2007) Nature 446, 415-419). N-Ethylmaleimide blocked auto-cleavage induced by the addition of myo-inositol hexakisphosphate, suggesting that cysteine residues are essential for the processing of clostridial glucosylating toxins. Our data indicate that clostridial glucosylating cytotoxins possess an inherent cysteine protease activity related to the cysteine protease of Vibrio cholerae RTX toxin, which is responsible for auto-cleavage of glucosylating toxins.  相似文献   

13.
We generated fragments of simian virus 40 large tumor antigen (T antigen) by tryptic digestion and assayed them for helicase activity and helicase substrate (mostly single-stranded DNA)-binding activity in order to map the domain sites on the protein. The N-terminal 130 amino acids were not required for either activity, since a 76-kilodalton (kDa) fragment (amino acids 131 to 708) was just as active as intact T antigen. To map the helicase domain further, smaller tryptic fragments were generated. A 66-kDa fragment (131 to about 616) retained some activity, whereas a slightly smaller 62-kDa fragment (137 or 155 to 616) had none. This suggests that the minimal helicase domain maps from residue 131 to approximately residue 616. To map the helicase substrate-binding domain, we tested various fragments in a substrate-binding assay. The smallest fragment for which we could clearly demonstrate activity was a 46-kDa fragment (131 to 517). To determine the relationship between the helicase substrate domain and the origin-binding domain (131 to 257, minimal core region; 131 to 371, optimal region), we performed binding experiments with competitor DNAs present. We found that origin-containing double-stranded DNA was an excellent competitor of the binding of the helicase substrate to T antigen, suggesting that the two domains overlap. Therefore, full helicase activity requires at least a partial origin-binding domain as well as an active ATPase domain. Additionally, we found that the helicase substrate was a poor competitor of origin-binding activity, indicating that T antigen has a much higher affinity to origin sequences than to the helicase substrate.  相似文献   

14.
Binding of calpain fragments to calpastatin   总被引:1,自引:0,他引:1  
Their cDNA-derived amino acid sequences predict that the 80-kDa subunits of the micromolar and millimolar Ca(2+)-requiring forms of the Ca(2+)-dependent proteinase (mu- and m-calpain, respectively) each consist of four domains and that the 28-kDa subunit common to both mu- and m-calpain consists of two domains. The calpains were allowed to autolyze to completion, and the autolysis products were separated and were characterized by using gel permeation chromatography, calpastatin affinity chromatography, and sequence analysis. Three major fragments were obtained after autolysis of either calpain. The largest fragment (34 kDa for mu-calpain, 35 kDa for m-calpain) contains all of domain II, the catalytic domain, plus part of domain I of the 80-kDa subunit of mu- or m-calpain. This fragment does not bind to calpastatin, a competitive inhibitor of the calpains, and has no proteolytic activity in either the absence or presence of Ca2+. The second major fragment (21 kDa for mu-calpain and 22 kDa for m-calpain) contains domain IV, the calmodulin-like domain, plus approximately 50 amino acids from domain III of the 80-kDa subunit of mu- or m-calpain. The third major fragment (18 kDa) contains domain VI, the calmodulin-like domain of the 28-kDa subunit. The second and third major fragments bind to a calpastatin affinity column in the presence of Ca2+ and are eluted with EDTA. The second and third fragments are noncovalently bound, so the 80- and 28-kDa subunits of the intact calpain molecules are noncovalently bound at domains IV and VI. After separation in 1 M NaSCN, the 28-kDa subunit binds completely to calpastatin, approximately 30-40% of the 80-kDa subunit of mu-calpain binds to calpastatin, and the 80-kDa subunit of m-calpain does not bind to calpastatin in the presence of 1 mM Ca2+.  相似文献   

15.
Pseudomonas exotoxin (PE) is a potent cytotoxic agent that is composed of 613 amino acids arranged into three major domains. We have previously identified two positions where ligands can successfully be placed in PE to direct it to cells with specific surface receptors. One site is at the amino terminus and the other is close to but not at the C-terminus. To examine the possibility of constructing oncotoxins with two different recognition elements that will bind to two different receptors, we have placed cDNAs encoding either transforming growth factor alpha (TGF alpha) or interleukin 6 (IL6) at the 5' end of a PE gene and also inserted a cDNA encoding TGF alpha near the 3' end of the PE gene. The plasmids encoding these chimeric toxins were expressed in Escherichia coli and the chimeric proteins purified to near homogeneity. In all the new toxins, the TGF alpha near the C-terminus was inserted after amino acid 607 of PE and followed by amino acids 604-613 so that the correct PE C-terminus (REDLK) was preserved. For each chimera, the toxin portion was either PE4E, in which the cell binding domain (domain Ia) is mutated, PE40, in which domain Ia is deleted, or PE38, in which domain Ia and part of domain Ib are deleted. These derivatives of PE do not bind to the PE receptor and allow 607, 355, or 339 amino acids, respectively, between the two ligands.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Pseudomonas exotoxin (PE) is a single polypeptide chain that contains 613 amino acids and is arranged into three structural domains. Domain I is responsible for cell recognition, II for translocation of PE across membranes and III for ADP ribosylation of elongation factor 2. Treatment of PE with reagents that react with lysine residues has been shown to lead to a reduction in cytotoxic activity apparently due to a modification of domain I (Pirker, R., FitzGerald, D. J. P., Hamilton, T. C., Ozols, R. F., Willingham, M. C., and Pastan, S. (1985) Cancer Res. 45, 751-757). To determine which lysine residues are important in cell recognition, all 12 lysines in domain I were converted to glutamates by site-directed mutagenesis. Also, two deletion mutants encompassing almost all of domain I (amino acids 4-252) or most of domain I (amino acids 4-224) were studied. The mutant proteins were produced in Escherichia coli, purified, and tested for their cytotoxic activity against Swiss 3T3 cells and in mice. The data indicate that conversion of lysine 57 to glutamate reduces cytotoxic activity towards 3T3 cells 50-100-fold and in mice about 5-fold. Deletion of amino acids 4-224 causes a similar reduction in toxicity towards cells and mice. Deletion of most of the rest of domain I (amino acids 4-252) causes a further reduction in toxicity toward cells and mice indicating this second region between amino acids 225 and 252 of domain I is also important in the toxicity of PE. Competition assays indicated that the ability of PEGlu57 to bind to 3T3 cells was greatly diminished, accounting for its diminished cytotoxic activity.  相似文献   

17.
We have used cassette and deletion mutagenesis to analyze the structural features of fragment B-related sequences in the fusion toxin DAB486-IL-2 (where IL-2 represents interleukin-2) that are necessary for the efficient delivery of fragment A to the cytosol of target cells. We demonstrate that whereas an intact disulfide bond between Cys461 and Cys471 may be required for the cytotoxic action of native diphtheria toxin, this bond is not required for the cytotoxic action of DAB486-IL-2. The in-frame deletion of the 97 amino acids from Thr387 to His485 of DAB486-IL-2 increases both the potency and the apparent dissociation constant (Kd) of the resulting fusion toxin for high affinity interleukin-2 receptor-bearing target cells. In contrast, the inframe deletion of either the 191 amino acids between Asp291 and Gly483 or the 85 amino acids between Asn204 and Ile290 results in a 1000-fold loss in potency. These regions contain the putative membrane-spanning regions and the amphipathic membrane surface-associating regions of fragment B, respectively. These results indicate that the efficient delivery of the ADP-ribosyltransferase from DAB486-IL-2 to the cytosol requires the membrane-associating domains of fragment B. This function has been postulated to play a role in the diphtherial intoxication of eukaryotic cells. However, unlike native diphtheria toxin, fragment B sequences distal to Thr387 do not enhance the potency of DAB486-IL-2.  相似文献   

18.
The 31-kDa domain of human plasma fibronectin has been completely characterized. This fragment is located at the COOH-terminal end of the molecule immediately preceding the 3-kDa interchain disulfide-containing peptide. The 31-kDa domain was obtained after trypsin digestion of fibronectin and purified by affinity chromatography on gelatin- and heparin-Sepharose columns. The fragment eluted in the heparin-unbound fraction and was further purified by DEAE-cellulose and high performance liquid chromatography. The 31-kDa fragment contained a fibrin-binding site (fibrin II site) which was only active at physiological NaCl concentrations and therefore differed from that located in the NH2-terminal domain which also bound at lower NaCl concentrations. The 31-kDa domain bound to thiopropyl-Sepharose and was shown to contain a free sulfhydryl group located at position 35 in the sequence. To determine the complete amino acid sequence of this fragment, a trypsin digestion was performed on the reduced and alkylated 31-kDa domain, and the 17 resulting peptides were isolated by high performance liquid chromatography; their amino acid compositions and amino acid sequences have been determined, and the arrangement of peptides was achieved by comparison with the sequences deduced from human and rat cDNA clones and with a related plasmic fragment from bovine fibronectin. Comparison of these three sequences showed 23 amino acid differences between human and rat fibronectin and 16 between human and bovine fibronectin. This represents a 91 and 94% homology, respectively. An interesting finding is that the 31-kDa fragment contains a deletion of 31 residues when compared to the rat cDNA sequence. This deletion appears to represent a species difference since it is due to a shorter mRNA in the case of human fibronectin.  相似文献   

19.
Factor VIII delta II is a genetically engineered deletion variant of factor VIII expressed by recombinant Chinese hamster ovary cells, in which a major portion of the central (B) domain and a part of the light chain (Pro771-Asp1666) are missing. After immunoaffinity purification, the kinetics of thrombin cleavage of the novel molecule was analysed by SDS/PAGE, Western blotting and N-terminal amino acid sequencing. Thrombin first cleaves factor VIII delta II at Arg740-Ser741 to generate the 90-kDa heavy chain and an 80-kDa fusion polypeptide consisting of the remaining portion of the B domain and the 73-kDa light chain. The 90-kDa fragment is further cleaved, giving rise to 50-kDa and 40-kDa fragments while the 80-kDa fragment generates a 71/73-kDa doublet. The 71/73-kDa doublet, 50-kDa and 40-kDa fragments were further analysed by N-terminal amino acid sequencing and found to correspond to the predicted amino acid sequences. Our study shows that, in spite of the 900 amino acid deletion present in factor VIII delta II, the essential structural elements required for thrombin activation are conserved.  相似文献   

20.
Bordetella pertussis adenylate cyclase (AC) toxin belongs to the RTX family of toxins but is the only member with a known catalytic domain. The principal pathophysiologic function of AC toxin appears to be rapid production of intracellular cyclic AMP (cAMP) by insertion of its catalytic domain into target cells (referred to as intoxication). Relative to other RTX toxins, AC toxin is weakly hemolytic via a process thought to involve oligomerization of toxin molecules. Monoclonal antibody (MAb) 3D1, which binds to an epitope (amino acids 373 to 399) at the distal end of the catalytic domain of AC toxin, does not affect the enzymatic activity of the toxin (conversion of ATP into cAMP in a cell-free system) but does prevent delivery of the catalytic domain to the cytosol of target erythrocytes. Under these conditions, however, the ability of AC toxin to cause hemolysis is increased three- to fourfold. To determine the mechanism by which the hemolytic potency of AC toxin is altered, we used a series of deletion mutants. A mutant toxin, DeltaAC, missing amino acids 1 to 373 of the catalytic domain, has hemolytic activity comparable to that of wild-type toxin. However, binding of MAb 3D1 to DeltaAC enhances its hemolytic activity three- to fourfold similar to the enhancement of hemolysis observed with 3D1 addition to wild-type toxin. Two additional mutants, DeltaN489 (missing amino acids 6 to 489) and DeltaN518 (missing amino acids 6 to 518), exhibit more rapid hemolysis with quicker onset than wild-type toxin does, while DeltaN549 (missing amino acids 6 to 549) has reduced hemolytic activity compared to wild-type AC toxin. These data suggest that prevention of delivery of the catalytic domain or deletion of the catalytic domain, along with additional amino acids distal to it, elicits a conformation of the toxin molecule that is more favorable for hemolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号