首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structures and functions of the cellular acidic compartments are strongly dependent on the pH gradients across vesicular membranes. Measurement and imaging of the vesicular pH require fluorophores with appropriate pK(a) values. In this report, we characterized the pH-dependent lifetime responses of a family of acidotropic probes, LysoSensors, to evaluate their usefulness to low-pH lifetime imaging. LysoSensors are cell-permeable weak bases that selectively accumulate in acidic vesicles after being protonated. They have higher quantum yields at lower pH ranges to allow visualization of the lysosomes. For LysoSensors DND-167, DND-189, and DND-153, raising the buffer pH increased the quenching effects of their basic side chains and substantially reduced their steady-state fluorescence and lifetimes. The apparent pK(a) values determined from their lifetime responses were shifted to near neutral values because of the dominant intensity contribution from their protonated species. One unique property of LysoSensor DND-189 is its nonmonotonic lifetime responses of the maxima occurring between pH 4 and 5. LysoSensor DND-192 did not show significant lifetime changes over a wide pH range. LysoSensor DND-160, which was the only excitation and emission ratiometric probe, showed significant pH-dependent lifetime changes as well as its spectral shifts. Its apparent pK(a) values determined from the lifetime responses were comparable to the lysosomal pH because of its bright basic form. Because of the pH-dependent absorption spectra, the apparent pK(a) values could be manipulated between 3 and 5 by changing the excitation and/or emission wavelengths. These results indicate that LysoSensor DND-160 is a promising probe for lifetime imaging to determine lysosomal pH.  相似文献   

2.
Botulinum Neurotoxin (BoNT) produced by the bacterium Clostridium botulinum as a complex with NAPs causes botulism. It has been known that the NAPs protect the toxin from both extremes of pHs and proteases of the GI tract. In an attempt to emulate the physiological conditions encountered by the toxin, we examined BoNT/A, BoNT/A complex, and NAPs under different pH conditions and monitored their structural characteristics by far-UV CD and thermal denaturation analysis. BoNT/A complex showed the maximum CD signal with a mean residue weight ellipticity of ?1.8 × 105° cm2/dmol at 222 nm at both acidic and neutral pHs. Thermal denaturation analysis revealed NAPs to be the most stable amongst the three protein samples examined. Interestingly and quite uniquely, at pH 2.5, there was an increase in CD signal for BoNT complex as a function of temperature, which correlated with the NAPs profile, indicating a shielding effect of NAPs on BoNT complex at low pH. Calculation of the weighted mean of the ellipticities at the Tm for thermal unfolding of toxin and NAPs at neutral and acidic pHs showed variation with that of BoNT complex, suggesting structural reorganization in BoNT complex upon the association of NAPs and BoNT. In conclusion, this study reveals the structural behavior of BoNT complex and NAPs with pH changes substantially, which could be quite relevant for BoNT survival under extreme pH conditions in vivo.  相似文献   

3.
Keyhole limpet hemocyanin (KLH) is widely used as an immune stimulant and hapten carrier derived from a marine mollusc Megathura crenulata. To provide details of the stability and equilibrium of KLH, different intermediate species were investigated with a series of biophysical techniques: circular dichroism, binding of hydrophobic dye, 1-anilino-8-naphthalene sulfonic acid, acrylamide-induced fluorescence quenching, thermal stability and dynamic light scattering. KLH in its native state at pH 7.4 exists in the stable didecameric form with hydrodynamic radii (R h) of 28.22 nm, which is approximately equal to a molecular mass of 8.8 ± 0.6 MDa. The experimental results demonstrated the presence of two structurally distinct species in the conformational transition of KLH under acidic conditions. One species populates at pH 2.8, characterized as decameric (4.8 ± 0.2 MDa; R h = 22.02 nm), molten globule-like state, while the other accumulates at pH 1.2 and is characterized as a tetramer (2.4 ± 0.8 MDa; R h = 16.47 nm) with more organized secondary and tertiary structures. Our experimental manipulation of the oligomeric states of KLH has provided data that correlate well with the known oligomeric forms obtained from total KLH formed in vivo and extends our understanding of multimer formation by KLH. The results are of particular interest in light of the important role of the mechanistic pathway of pH-dependent structural changes of Hc stability in the biochemical and medical applications of these respiratory proteins.  相似文献   

4.
Enhancement of acid resistance of Scenedesmus dimorphus by acid adaptation   总被引:1,自引:0,他引:1  
When using flue gas as carbon source for microalgae cultivation, the resulting acidic environment caused by SO X and NO X can inhibit microalgal growth. In this study, Scenedesmus dimorphus acquired increased acid resistance by prior exposure to sublethal acid stress; a process defined as acid adaptation. Among the five algal species tested, S. dimorphus showed the highest level of acid tolerance to extreme acid challenge (exposure to pH 3.0). Non-adapted and acid-adapted exponential algal cells were used as inocula for tubular photobioreactors aerated with 2 % CO2. Previously adapted at pH 4.0 for 1 h, S. dimorphus developed highest growth rate under extreme acidic condition, and the maximum biomass concentration and specific growth rate at pH 3.0 (3.638?±?0.074 g?L?1 and 1.037?±?0.008 d?1, respectively) were respectively 14.22 and 10.79 % higher than those of non-adapted cells. Moreover, acid-adapted cells could tolerate lower pH of 2.5, at which the growth of non-adapted cells was totally inhibited. All the results indicated that acid adaptation was an effective approach for the acid resistance enhancement of microalgae.  相似文献   

5.
We have interrogated the isothermal folding behavior of the DNA i-motif of the human telomere, dC19, and a high-stability i-motif-forming sequence in the promoter of the human DNA repair gene RAD17 using human physiological solution and temperature conditions. We developed a circular-dichroism-spectroscopy-based pH titration method that is followed by analysis of titration curves in the derivative domain and found that the observed pH-dependent folding behavior can be significantly different and, in some cases, multiphasic, with a dependence on how rapidly i-motif folding is induced. Interestingly, the human telomere sequence exhibits unusual isothermal hysteresis in which the unfolding process always occurs at a higher pH than the folding process. For the RAD17 i-motif, rapid folding by injection into a low-pH solution results in triphasic unfolding behavior that is completely diminished when samples are slowly folded in a stepwise manner via pH titration. Chemical footprinting of the RAD17 sequence and pH titrations of dT-substituted mutants of the RAD17 sequence were used to develop a model of RAD17 folding and unfolding. These results may provide valuable information pertinent to i-motif use in sensors and materials, as well as insight into the potential biological activity of i-motif-forming sequences under stepwise or instantaneous changes in pH.  相似文献   

6.
Effects of ocean acidification on Emiliania huxleyi strain RCC 1216 (calcifying, diploid life-cycle stage) and RCC 1217 (non-calcifying, haploid life-cycle stage) were investigated by measuring growth, elemental composition, and production rates under different pCO2 levels (380 and 950 μatm). In these differently acclimated cells, the photosynthetic carbon source was assessed by a 14C disequilibrium assay, conducted over a range of ecologically relevant pH values (7.9–8.7). In agreement with previous studies, we observed decreased calcification and stimulated biomass production in diploid cells under high pCO2, but no CO2-dependent changes in biomass production for haploid cells. In both life-cycle stages, the relative contributions of CO2 and HCO3 ? uptake depended strongly on the assay pH. At pH values ≤ 8.1, cells preferentially used CO2 (≥ 90 % CO2), whereas at pH values ≥ 8.3, cells progressively increased the fraction of HCO3 ? uptake (~45 % CO2 at pH 8.7 in diploid cells; ~55 % CO2 at pH 8.5 in haploid cells). In contrast to the short-term effect of the assay pH, the pCO2 acclimation history had no significant effect on the carbon uptake behavior. A numerical sensitivity study confirmed that the pH-modification in the 14C disequilibrium method yields reliable results, provided that model parameters (e.g., pH, temperature) are kept within typical measurement uncertainties. Our results demonstrate a high plasticity of E. huxleyi to rapidly adjust carbon acquisition to the external carbon supply and/or pH, and provide an explanation for the paradoxical observation of high CO2 sensitivity despite the apparently high HCO3 ? usage seen in previous studies.  相似文献   

7.
Rhizopus delemar and associated species attack a wide range of fruit and vegetables after harvest. Host nutrients and acidic pH are required for optimal germination of R. delemar, and we studied how this process is triggered. Glucose induced spore swelling in an acidic environment, expressed by an up to 3-fold increase in spore diameter, whereas spore diameter was smaller in a neutral environment. When suspended in an acidic environment, the spores started to float, indicating a change in their density. Treatment of the spores with HgCl2, an aquaporin blocker, prevented floating and inhibited spore swelling and germ-tube emergence, indicating the importance of water uptake at the early stages of germination. Two putative candidate aquaporin-encoding genes—RdAQP1 and RdAQP2—were identified in the R. delemar genome. Both presented the conserved NPA motif and six-transmembrane domain topology. Expressing RdAQP1 and RdAQP2 in Arabidopsis protoplasts increased the cells'' osmotic water permeability coefficient (Pf) compared to controls, indicating their role as water channels. A decrease in R. delemar aquaporin activity with increasing external pH suggested pH regulation of these proteins. Substitution of two histidine (His) residues, positioned on two loops facing the outer side of the cell, with alanine eliminated the pH sensing resulting in similar Pf values under acidic and basic conditions. Since hydration is critical for spore switching from the resting to activate state, we suggest that pH regulation of the aquaporins can regulate the initial phase of R. delemar spore germination, followed by germ-tube elongation and host-tissue infection.  相似文献   

8.
The aim of this research was to design and evaluate a hydrophilic matrix system for sustained release of glipizide, a weakly acidic poor soluble drug. A combination of inclusion complexation and microenvironmental pH modification techniques was utilized to improve the dissolution and pH-independent release of glipizide. Hydroxypropyl-β-cyclodextrin (HP-β-CD) was used as the complexation agent while sodium citrate and magnesium oxide (MgO) were used as model pH modifiers. The hydrophilic matrix tablets were prepared by powder direct compression and evaluated by in vitro dissolution study respectively in pH 6.8 and pH 1.2 dissolution media. The formulations containing MgO exhibited increased cumulative drug release from less than 40% in the reference formulation to 90% within 24 h in acidic media (pH 1.2). The release profile in acidic media was similar to the alkaline media (pH 6.8) with a similarity factor (f2) of 55.0, suggesting the weakening of the effect of pH on the dissolution efficiency of glipizide. The release profile fitted well into the Higuchi model and the dominant mechanism of drug release was Fickian diffusion while case II transport/polymer relaxation occurred. In conclusion, combining inclusion complexation agents and pH modifiers had improved the dissolution of glipizide as well as achieved the pH-independent release profile.  相似文献   

9.
aiiA gene encoding AHL-lactonase was isolated from Bacillus cereus strain N26.2, originating from a striped catfish (Pangasianodon hypophthalmus) pond in Vietnam. This gene, abbreviated as aiiA(N26.2), was cloned and expressed in a competent Escherichia coli strain BL21(DE3)pLysS. The resulting protein, abbreviated as AiiAN26.2, was highly active in the pH range of 6–8 and could retain 80 % of the maximum activity under storage for 5 days at 4 °C or for 3 days at 20 °C. These properties of AiiAN26.2 protein confers its future application via feed supplementation, with the purpose of controlling aquaculture pathogens which regulate the virulence via a quorum sensing system.  相似文献   

10.
The effect of pH on the production of cellulases and xylanases by Penicillium echinulatum S1M29 was evaluated in a shake flask and in a bioreactor. To control the pH in a shake flask, a buffer made with citric acid and disodium phosphate was used. The buffer was capable of maintaining the culture pH values for the first 48 h. In the bioreactor, the pH was controlled automatically by the addition of NaOH and H2SO4. In the shake flask, the highest activities of xylanases (18.5 IU/mL) and endoglucanases (8.2 IU/mL), as well as the highest filter paper activity (FPA) (0.9 IU/mL), were obtained at initial pH values of between 6.0 and 7.0. In the bioreactor, the highest activities of these enzymes were obtained in a pH range of 5.5 to 6.5. Different isoforms of the endoglucanases were found in the various cultures depending on the pH. More acidic pH ranges favored the production of β-glucosidases in both the shake flask and the bioreactor.  相似文献   

11.
Green tea polyphenols (GTP) are widely believed to function as antioxidants and antimicrobial agents. Here we observed that GTP and epigallocatechin gallate, the most abundant catechin in GTP, could also function as prooxidants and produce hydrogen peroxide (H2O2) to inhibit the growth of Pseudomonas aeruginosa. pH value of the medium was the key factor that affected prooxidant versus antioxidant property of GTP. Under weakly acidic conditions (pH 5.5–6.5), GTP showed antioxidant activity by eliminating H2O2; whereas, under neutral and weakly alkaline conditions (pH 7.0–8.0), GTP showed prooxidant activity and inhibited the growth of P. aeruginosa. Furthermore, we studied the effects of GTP on gene expression profiles of a few oxidative stress-related genes by quantitative real-time PCR analysis. After 10 min to 1 h of exposure under weakly alkaline condition, GTP significantly up-regulated expression levels of katB, sodM, ohr, lexA, and recN gene. These findings highlight that the pH-dependent H2O2 production by GTP contributes to the antibacterial activity and can induce oxidative stress-related responses in P. aeruginosa.  相似文献   

12.
The Rv3203 (LipV) of Mycobacterium tuberculosis (Mtb) H37Rv, is annotated as a member of Lip family based on the presence of characteristic consensus esterase motif ‘GXSXG’. In vitro culture studies of Mtb H37Ra indicated that expression of Rv3203 gene was up-regulated during acidic stress as compared to normal whereas no expression was observed under nutrient and oxidative stress conditions. Therefore, detailed characterization of Rv3203 was done by gene cloning and its further expression and purification as his-tagged protein in microbial expression system. The enzyme was purified to homogeneity by affinity chromatography. It demonstrated broad substrate specificity and preferentially hydrolyzed p-nitrophenyl myristate. The purified enzyme demonstrated an optimum activity at pH 8.0 and temperature 50 °C. The specific activity, K m and V max of enzyme was determined to be 21.29 U mg?1 protein, 714.28 μM and 62.5 μmol ml?1 min?1, respectively. The pH stability assay and circular dichroism spectroscopic analysis revealed that Rv3203 protein is more stable in acidic condition. Tetrahydrolipstatin, a specific lipase inhibitor and RHC80267, a diacylglycerol lipase inhibitor abolished the activity of this enzyme. The catalytic triad residues were determined to be Ser50, Asp180 and His203 residues by site-directed mutagenesis.  相似文献   

13.
A new acidophilic xylanase (XYN11A) from Penicillium oxalicum GZ-2 has been purified, identified and characterized. Synchronized fluorescence spectroscopy was used for the first time to evaluate the influence of metal ions on xylanase activity. The purified enzyme was identified by MALDI TOF/TOF mass spectrometry, and its gene (xyn11A) was identified as an open reading frame of 706 bp with a 68 bp intron. This gene encodes a mature protein of 196 residues with a predicted molecular weight of 21.3 kDa that has the 100 % identity with the putative xylanase from the P. oxalicum 114-2. The enzyme shows a structure comprising a catalytic module family 10 (GH10) and no carbohydrate-binding module family. The specific activities were 150.2, 60.2, and 72.6 U/mg for beechwood xylan, birchwood xylan, and oat spelt xylan, respectively. XYN11A exhibited optimal activity at pH 4.0 and remarkable pH stability under extremely acidic condition (pH 3). The specific activity, K m and V max values were 150.2 U/mg, 30.7 mg/mL, and 403.9 μmol/min/mg for beechwood xylan, respectively. XYN11A is a endo-β-1,4-xylanase since it release xylobiose and xylotriose as the main products by hydrolyzing xylans. The activity of XYN11A was enhanced 155 % by 1 mM Fe2+ ions, but was inhibited strongly by Fe3+. The reason of enhancing the xylanase activity of XYN11A with 1 mM Fe2+ treatment may be responsible for the change of microenvironment of tryptophan residues studied by synchronous fluorescence spectrophotometry. Inhibition of the xylanase activity by Fe3+ was first time demonstrated to associate tryptophan fluorescence quenching.  相似文献   

14.
The α-acetolactate decarboxylase (ALDC) can reduce diacetyl fleetly to promote mature beer. A safe strain Bacillus subtilis WB600 for high-yield production of ALDC was constructed with the ALDC gene saald from Staphylococcus aureus L3-15. SDS-PAGE analysis revealed that S. aureus α-acetolactate decarboxylase (SaALDC) was successfully expressed in recombinant B. siutilis strain. The enzyme SaALDC was purified using Ni-affinity chromatography and showed a maximum activity at 45 °C and pH 6.0. The values of K m and V max were 17.7 μM and 2.06 mM min?1, respectively. Due to the unstable property of SaALDC at low pH conditions that needed in brewing process, site-directed mutagenesis was proposed for improving the acidic stability of SaALDC. Homology comparative modeling analysis showed that the mutation (K52D) gave rise to the negative-electrostatic potential on the surface of protein while the numbers of hydrogen bonds between the mutation site (N43D) and the around residues increased. Taken together the effect of mutation N43D-K52D, recombinant SaALDCN43D-K52D showed dramatically improved acidic stability with prolonged half-life of 3.5 h (compared to the WT of 1.5 h) at pH 4.0. In a 5-L fermenter, the recombinant B. subtilis strain that could over-express SaALDCN43D-K52D exhibited a high yield of 135.8 U mL?1 of SaALDC activity, about 320 times higher comparing to 0.42 U mL?1 of S. aureus L3-15. This work proposed a  strategy for improving the acidic stability of SaALDC in the  B. subtilis host.  相似文献   

15.
The stability (half-life, t½) of the large catalase (CAT) isolated from Aspergillus terreus was decreased under acidic conditions (maximum t½ ~8.5 months at pH ≤ 6) versus alkaline conditions (t½ ~15 months at pH 8–12). Acidic conditions induce the dissociation of haem from CAT, as revealed from a reduction in the Soret peak intensity at 405 nm and an increase in the peak current at Fe3+/Fe2+ redox potentials. This increase in current is attributed to the facile electron transfer from the free haem generated on the electrode surface as a result of its disintegration from the insulating protein matrix. The haem isolated from CAT at acidic condition was reconstituted with apo-CAT at alkaline denaturing conditions to regenerate the CAT activity.  相似文献   

16.
The thermal properties of cowpea protein isolates (CPI) were studied by differential scanning calorimetry under the influence of various conditions. An increase in the pH of protein extraction, from 8.0 to 10.0, during CPI preparation promoted a partial denaturation of cowpea proteins. Increases in enthalpy change of denaturation (ΔH) and temperature of denaturation (Td) were detected with increasing protein concentration from 7.5 to 10.5% (w/w). This behavior suggests that denaturation involves a first step of dissociation of protein aggregates. Calcium induced thermal stabilization in cowpea proteins, the increase in Td was ca. 0.3 °C/mM for protein dispersions of 7.5% (w/w) for 0 to 40 mM CaCl2. High hydrostatic pressure (HHP) induced denaturation in CPI in a pressure level dependent manner. The presence of calcium protected cowpea proteins towards HHP-induced denaturation when pressure level was 400 MPa, but not when it was 600 MPa. Thermal properties of cowpea protein isolates were very sensitive to processing conditions, these behaviors would have implications in processing of CPI-containing foodstuff.  相似文献   

17.
Endoglucanase activity produced by Paenibacillus polymyxa BEb-40 was studied. In submerged culture with minimal medium supplemented with carboxymethylcellulose (CMC), this microorganism produced up to 0.37 U/mL endoglucanase activity with high specific activity (14.3 U/mgtotal protein). Detection of endoglucanase activity through zymography revealed at least 14 isoenzymes with molecular weights between 38 and 220 kDa. This high variety of secreted endoglucanases has not been described previously in Paenibacillus genus. The optimum conditions, determined by response surface methodology, were 48 °C and pH 3.4, which allowed an increase of 33.7 % in the relative endoglucanase activity obtained with respect to the standard conditions. Nevertheless, high levels of hydrolysis of at least 70 % of the maximum activity could be obtained at wide ranges of pH (2–9) and temperature (40–60 °C). Under optimal conditions, high levels of CMC hydrolysis were reached, of about 40 %, after only 12 h of reaction with substrate/total protein ratios between 19 and 76. Kinetic analysis revealed that endoglucanase activity followed a mixed inhibition model (K m = 8.4 mM, K ic = 0.03 mM, K iu = 0.35 mM, V max = 33.3 U/mgtotal protein). These results allow to consider P. polymyxa BEb-40 as a promising microorganism for the production of endoglucanases, with possibilities of application in the breakdown of lignocellulosic biomass. The high specific activity at wide ranges of pH and temperature can allow its use in a wide variety of processes, under both acidic and alkaline conditions, as well as in mesophilic and thermophilic temperatures, further reducing the amount of enzymes used.  相似文献   

18.
Evidence is presented showing that arylsulfatases reacting at acidic pH are more active towards p-nitrocatechol sulfate substrate, while the reverse is true for the enzymes having alkaline pHmax. An explanation of this phenomenon is suggested based on the ionization of p-nitrocatechol sulfate (pKa = 6.4) and a much higher reactivity of sulfatases with the acidic form of the substrate.  相似文献   

19.
The sensitivity of nitrifying bacteria to acidic conditions is a well-known phenomenon and generally attributed to the lack and/or toxicity of substrates (NH3 and HNO2) with decreasing pHs. In contrast, we observed strong nitrification at a pH around 4 in biofilms grown on chalk particles and investigated the following hypotheses: the presence of less acidic microenvironments and/or the existence of acid-tolerant nitrifiers. Microelectrode measurements (in situ and under various experimental conditions) showed no evidence of a neutral microenvironment, either within the highly active biofilm colonizing the chalk surface or within a control biofilm grown on a nonbuffering (i.e., sintered glass) surface under acidic pH. A 16S rRNA approach (clone libraries and fluorescence in situ hybridizations) did not reveal uncommon nitrifying (potentially acid-tolerant) strains. Instead, we found a strongly acidic microenvironment, evidence for a clear adaptation to the low pH in situ, and the presence of nitrifying populations related to subgroups with low Kms for ammonia (Nitrosopira spp., Nitrosomonas oligotropha, and Nitrospira spp.). Acid-consuming (chalk dissolution) and acid-producing (ammonia oxidation) processes are equilibrated on a low-pH steady state that is controlled by mass transfer limitation through the biofilm. Strong affinity to ammonia and possibly the expression of additional functions, e.g., ammonium transporters, are adaptations that allow nitrifiers to cope with acidic conditions in biofilms and other habitats.  相似文献   

20.
A method for the ratiometric pH sensing using LysoSensor DND-192 is presented in this paper. It works in the physiological pH range. It is based on the use of two fluorophores which differ significantly in their lifetimes. As the discrimination of their emissions is performed through two different frequencies, this method can allow significant overlap of the emission spectra. A simple long-pass filter, or a combination of long- and short-pass filters, was used instead of narrow-bandpass devices. Importantly, the measurements were carried out under strong ambient light. The method could be used in a wide variety of applications, such as intracellular measurements, microscopy, bioprocess monitoring, etc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号