首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Okadaic acid (OA), a tumor promoter in the mouse skin carcinogenesis model, has been shown to induce apoptosis in tumor cell lines that harbor H-ras mutations. We examined the effects of OA on mouse keratinocytes with (308) and without (C50) H-ras mutation in vitro and in an in vivo system. Following exposure to varying concentrations of OA over time, the effects of OA in vitro were assessed using microscopic, biochemical and flow cytometric techniques. OA effects on the cells included incorporation of propidium iodide, externalization of phosphatidylserine, and development of hypodiploidy. 308 cells demonstrated typical DNA ladder formation, rapid chromatin and nuclear condensation, while C50 cells demonstrated delayed chromatin condensation and nuclear fragmentation, but no DNA ladder formation. In vivo, OA elicited delayed papilloma formation and reduced tumor multiplicity. Though its mechanism of action is not fully known, we found that OA-induced inhibition of the clonal expansion of initiated cells may be related to the presence or absence of H-ras mutation.  相似文献   

2.
Palladium nanoparticles were potentiostatically electrodeposited on a gold surface at a highly negative potential. The nanostructure, as a transducer, was utilized to immobilize a Brucella-specific probe and the process of immobilization and hybridization was detected by electrochemical methods. The proposed method for detection of the complementary sequence and a non-complementary sequence was applied. The fabricated genosensor was evaluated for the assay of the bacteria in the cultured and human samples with and without PCR. The genosensor could detect the complementary sequence with a sensitivity of 0.02 μA dm3 mol−1, a linear concentration range of 1.0 × 10−12 to 1.0 × 10−19 mol dm−3, and a detection limit of 2.7 × 10−20 mol dm−3.  相似文献   

3.
Rapamycin is a powerful immunosuppressant that causes cell cycle arrest in T cells and several other cell types. Despite its important clinical role, the mechanism of action of rapamycin is not fully understood. Here, we show that rapamycin causes the activation of protein phosphatase-2A1 which forms a complex with proliferation cell nuclear antigen (PCNA) in a CD4+ T cell line. Rapamycin also induces PCNA translocation from the cytoplasm to the nucleus, an effect which is antagonized by okadaic acid, an inhibitor of type 2A protein phosphatases. These findings provide evidence for the existence of a signal transduction pathway that links a rapamycin-activated type 2A protein phosphatase to the control of DNA synthesis, DNA repair, cell cycle, and cell death via PCNA.  相似文献   

4.
This work presents the functional characterisation of a protein phosphatase 2A (PP2A) catalytic subunit obtained by genetic engineering and its conjugation to magnetic particles (MPs) via metal coordination chemistry for the subsequent development of assays for diarrheic lipophilic marine toxins. Colorimetric assays with free enzyme have allowed the determination of the best enzyme activity stabiliser, which is glycerol at 10%. They have also demonstrated that the recombinant enzyme can be as sensitive towards okadaic acid (OA) (LOD = 2.3 μg/L) and dinophysistoxin-1 (DTX-1) (LOD = 15.2 μg/L) as a commercial PP2A and, moreover, it has a higher operational stability, which makes possible to perform the protein phosphatase inhibition assay (PPIA) with a lower enzyme amount. Once conjugated to MPs, the PP2A catalytic subunit still retains its enzyme activity and it can also be inhibited by OA (LOD = 30.1 μg/L).  相似文献   

5.
As a general strategy for determining the chemical function of the class of enzymes that cleaves glycosidic linkages with phosphate, the first mass spectrometry and direct detection assay for sugar phosphorylases has been developed and used to study the inhibition and minimal binding requirements of rabbit muscle phosphorylase b. In contrast to the currently employed assays for these enzymes that measure the nonphysiologically relevant reverse reaction of glycosidic bond synthesis and thereby require prior knowledge of not just one but two sugar components, this new method has the potential to greatly reduce the complexity in discovering the substrate specificity of a new enzyme. Certain phosphorylases can catalyze the degradation of glycogen into alpha-D-glucose-1-phosphate and are targets for the development of antidiabetic therapeutics. By electrospray ionization mass spectrometry analysis, the kinetic parameters K(m), V(max), and K(i) (for alpha/beta-D-glucose) have been determined for the rabbit muscle phosphorylase b. This enzyme accepts maltoheptaose, maltohexaose, and maltopentaose as substrates in the direction of glycogen degradation, but the tetrasaccharide maltotetraose cannot serve as a substrate for this phosphorylysis reaction.  相似文献   

6.
Acanthifolicin (9,10-epithio-okadaic acid from Pandoras acanthifolium) inhibited protein phosphatase-1 (PP1) similarly to okadaic acid (IC50 = 20 nM and 19 nM, respectively) but was slightly less active against protein phosphatase-2A (PP2A) (IC50 1 nM and 0.2 nM, respectively). Methyl esterification of acanthifolicin sharply reduced its activity. PP2A was inhibited with an IC50 = 5.0 μM, whilst PP1 was inhibited < 10% at 250 μM toxin. Okadaic acid methyl ester was similarly inactive whereas dinophysistoxin-1 (35-methyl okadaic acid) inhibited PP1/2A almost as potently as okadaic acid. Pure acanthifolicin/okadaic acid methyl ester may be useful as specific inhibitors of PP2A at 1–10 μM concentrations in vitro and perhaps in vivo. The data also indicate that a region on these toxins important for PP1/2A inhibition comprises the single carboxyl group.  相似文献   

7.
Appert C  Zoń J  Amrhein N 《Phytochemistry》2003,62(3):415-422
The conformationally restricted phenylalanine analogue 2-aminoindan-2-phosphonic acid (AIP) inhibits phenylalanine ammonia-lyase (PAL) competitively in a time-dependent manner. This phenomenon was investigated in more detail with the heterologously expressed, highly purified homotetrameric PAL-1 isozyme from parsley. The kinetic analysis revealed that the enzyme-inhibitor complex is formed in a single "slow" step with an association rate of k(2)=2.6+/-0.04 10(4) M(-1) s(-1). The inhibition is reversible with a dissociation rate of k(-2)=1.8+/-0.04 10(-4) s(-1) and an equilibrium constant of K(i)=7+/-2 nM. The previously described PAL inhibitor (S)-2-aminooxy-3-phenylpropanoic acid [(S)-AOPP] was also found to be a slow-binding inhibitor of PAL-1. The carboxyl analogue of AIP, 2-aminoindan-2-carboxylic acid, served as a substrate of PAL-1 and was converted to indene-2-carboxylic acid.  相似文献   

8.
Sucrose-phosphate synthase (SPS) purified from spinach leaves harvested in the dark, was activated by mammalian protein phosphatase 2A (PP2A). Activation of SPS in a fraction from darkened spinach leaves was largely prevented by either okadaic acid or microcystin-LR (specific inhibitors of PP1 and PP2A), while inhibitor-2 (a PP1 inhibitor) or Mg2+ (essential for PP2C) were ineffective. In vivo, okadaic add and microcystin-LR prevented the light-induced activation of SPS and decreased sucrose biosynthesis and CO2 fixation. It is concluded that PP2A is the major SPS phosphatase in spinach. This study is the first to employ microcystin-LR for modulating protein phosphorylation in vivo.  相似文献   

9.
Morphogenesis during eye development requires retinoic acid (RA) receptors plus RA-synthesizing enzymes, and loss of RA signaling leads to ocular disorders associated with loss of Pitx2 expression in perioptic mesenchyme. Several Wnt signaling components are expressed in ocular tissues during eye development including Dkk2, encoding an inhibitor of Wnt/β-catenin signaling, which was previously shown to be induced by Pitx2 in the perioptic mesenchyme. Here, we investigated potential cross-talk between RA and Wnt signaling during ocular development. Genetic studies using Raldh1/Raldh3 double null mice deficient for ocular RA synthesis demonstrated that Pitx2 and Dkk2 were both down-regulated in perioptic mesenchyme. Chromatin immunoprecipitation and gel mobility shift studies demonstrated the existence of a DR5 RA response element upstream of Pitx2 that binds all three RA receptors in embryonic eye. Axin2, an endogenous readout of Wnt/β-catenin signaling, was up-regulated in cornea and perioptic mesenchyme of RA deficient embryos. Also, expression of Wnt5a was expanded in perioptic mesenchyme of RA deficient eyes. Our findings demonstrate excessive activation of Wnt signaling in the perioptic mesenchyme of RA deficient mice which may be responsible for abnormal development leading to defective optic cup, cornea, and eyelid morphogenesis.  相似文献   

10.
11.
Studies in amphibian embryos have suggested that retinoic acid (RA) may function as a signal that stimulates posterior differentiation of the nervous system as postulated by the activation-transformation model for anteroposterior patterning of the nervous system. We have tested this hypothesis in retinaldehyde dehydrogenase-2 (Raldh2) null mutant mice lacking RA synthesis in the somitic mesoderm. Raldh2−/− embryos exhibited neural induction (activation) as evidenced by expression of Sox1 and Sox2 along the neural plate, but differentiation of spinal cord neuroectodermal progenitor cells (posterior transformation) did not occur as demonstrated by a loss of Pax6 and Olig2 expression along the posterior neural plate. Spinal cord differentiation in Raldh2−/− embryos was rescued by maternal RA administration, and during the rescue RA was found to act directly in the neuroectoderm but not the somitic mesoderm. RA generated by Raldh2 in the somitic mesoderm was found to normally travel as a signal throughout the mesoderm and neuroectoderm of the trunk and into tailbud neuroectoderm, but not into tailbud mesoderm. Raldh2−/− embryos also exhibited increased Fgf8 expression in the tailbud, and decreased cell proliferation in tailbud neuroectoderm. Our findings demonstrate that RA synthesized in the somitic mesoderm is necessary for posterior neural transformation in the mouse and that Raldh2 provides the only source of RA for posterior development. An important concept to emerge from our studies is that the somitic mesodermal RA signal acts in the neuroectoderm but not mesoderm to generate a spinal cord fate.  相似文献   

12.
Interaction of nucleoredoxin with protein phosphatase 2A   总被引:1,自引:0,他引:1  
A trimeric protein phosphatase 2A (PP2A(T55)) composed of the catalytic (PP2Ac), structural (PR65/A), and regulatory (PR55/B) subunits was isolated from rabbit skeletal muscle by thiophosphorylase affinity chromatography, and contained two additional proteins of 54 and 55 kDa, respectively. The 54 kDa protein was identified as eukaryotic translation termination factor 1 (eRF1) and as a PP2A interacting protein. The 55 kDa protein is now identified as nucleoredoxin (NRX). The formation of a complex between GST-NRX, PP2A(C) and PP2A(D) was demonstrated by pull-down experiments with purified forms of PP2A, and by immunoprecipitation of HA-tagged NRX expressed in HEK293 cells complexed endogenous PP2A subunits. Analysis of PP2A activity in the presence of GST-NRX showed that NRX competed with polycations for both stimulatory and inhibitory effects on different forms of PP2A.  相似文献   

13.
Li Z  Tu X  Wang CC 《Experimental cell research》2006,312(18):3504-3516
Mitosis and cytokinesis are highly coordinated in eukaryotic cells. But procyclic-form Trypanosoma brucei under G1 or mitotic arrest is still capable of dividing, resulting in anucleate daughter cells (zoids). Okadaic acid (OKA), an inhibitor of protein phosphatases PP1 and PP2A, is known to inhibit kinetoplast replication and cell division yielding multinucleate cells with single kinetoplasts. However, when OKA was applied to cells arrested in G1 or G2/M phase via RNAi knockdown of specific cdc2-related kinases (CRKs), DNA synthesis and nuclear division were resumed without kinetoplast replication or cell division, resulting in multinucleate cells as in the wild type. Cells arrested in G2/M via depleting the mitotic cyclin CycB2 or an aurora B kinase homologue TbAUK1 were, however, not released by OKA treatment. The phenomenon is thus similar to the OKA activation of Cdc2 in Xenopus oocyte by inhibiting PP2A [Maton, et al., Differential regulation of Cdc2 and Aurora-A in Xenopus oocytes: a crucial role of phosphatase 2A. J. Cell Sci. 118 (2005) 2485-2494]. A simultaneous knockdown of the seven PP1s or the PP2A catalytic subunit in T. brucei by RNA interference did not, however, result in multinucleate cells. This could be explained by assuming a negative regulation, either directly or indirectly, of CRK by an OKA-sensitive phosphatase, which could be a PP2A as in the Xenopus oocyte and a positive regulation of kinetoplast replication by an OKA-susceptible protein(s). Test of a PP2A-specific inhibitor, fostriecin, on cells arrested in G2/M via CRK depletion or a knockdown of the PP2A catalytic subunit from the CRK-depleted cells both showed a partial lift of the G2/M block without forming multinucleate cells. These observations support the abovementioned assumption and suggest the presence of a novel OKA-sensitive protein(s) regulating kinetoplast replication that still remains to be identified.  相似文献   

14.
In previous studies we have shown that all-trans retinoic acid (atRA)-treatment of the atRA-sensitive ovarian carcinoma cell line CA-OV3 repressed AP-1 activity by about 50%, while a similar effect was not observed in the atRA-resistant ovarian carcinoma cell line, SK-OV3. These results suggested that the repression of AP-1 activity may be one of the mechanisms by which atRA inhibits the growth of atRA-sensitive CA-OV3 cells. In the present studies, we investigated further the molecular mechanism by which AP-1 activity is repressed by atRA. We show that the repression of AP-1 activity correlates with an increase in JunB protein expression and a decrease in N-terminal phosphorylation of c-Jun. The decrease in N-terminal phosphorylation of c-Jun does not appear to be modulated by JNK or ERK, since their protein expression patterns and kinase activity do not correlate with the repression of AP-1 activity following treatment with atRA. However, the activity of the protein phosphatase PP2A was found to increase 24 h following atRA treatment in CA-OV3 cells. Moreover, the catalytic subunit of PP2A was found to associate with c-Jun in vivo following atRA treatment. Since the inhibition of AP-1 activity following atRA treatment of CA-OV3 cells was abolished in the presence of specific PP2A inhibitors, it is likely that PP2A plays an important role in the atRA-induced repression of AP-1.  相似文献   

15.
Protein phosphorylation has been identified as a reversible mechanism for the regulated suppression of metabolism and thermogenesis during mammalian hibernation. The effects of hibernation on the activity of serine/threonine and tyrosine protein phosphatases (PP1, PP2A, PP2C and PTPs) were assessed in five organs of Richardson’s ground squirrel. Each phosphatase subfamily responded differently during torpor, and each showed organ-specific patterns of activity changes. The distribution of PP1 catalytic subunit (PP1c) isoforms (α, δ, γ1) was assessed in five organs, and changes in the subcellular distribution of PP1 were observed during hibernation in liver and muscle. For example, in muscle, cytosolic PP1 content increased and myofibril-associated PP1 decreased during torpor. PP1c from ground squirrel liver was purified to homogeneity and characterized; temperature effects on PP1c maximal activity suggested that temperature had little or no effect on relative dephosphorylation potential at low temperatures. However, nucleotide inhibition of PP1c by ATP, ADP and AMP was much weaker at 5 °C compared with 37 °C assay temperatures. PP2A activity decreased in three organs (brown adipose, kidney, brain) during hibernation whereas PP2C activity was increased in liver and brain. PTPs were assessed using both a general substrate (ENDpYINASL) and a substrate (DADEpYLIPQQG) specific for PTPs containing the SH2-binding site; both revealed hibernation-associated changes in PTP activities. Changes in protein phosphatase activities suggest the relative importance of these modules in controlling metabolic function and cellular processes during mammalian hibernation.  相似文献   

16.
The microbial toxin okadaic acid (OA) specifically inhibits PPP-type ser/thr protein phosphatases. OA is an established tumor promoter with numerous cellular effects that include p53-mediated cell cycle arrest. In T51B rat liver epithelial cells, a model useful for tumor promotion studies, p53 activation is induced by tumor-promoting (low nanomolar) concentrations of OA. Two phosphatases sensitive to these concentrations of OA, PP2A and protein phosphatase 5 (PP5), have been implicated as negative regulators of p53. In this study we examined the respective roles of these phosphatases in p53 activation in non-neoplastic T51B cells. Increases in p53 activity were deduced from levels of p21 (cip1) and/or the rat orthologue of mdm2, two p53-regulated gene products whose induction was blocked by siRNA-mediated knockdown of p53. As observed with 10 nM OA, both phospho-ser15-p53 levels and p53 activity were increased by 10 microM fostriecin or SV40 small t-antigen. Both of these treatments selectively inhibit PP2A but not PP5. siRNA-mediated knockdown of PP2A, but not PP5, also increased p53 activity. Finally, adenoviral-mediated over-expression of an OA-resistant form of PP5 did not prevent increased phospho-ser15-p53, p53 protein, or p53 activity caused by 10 nM OA. Together these results indicate that PP5 blockade is not responsible for OA-induced p53 activation and G1 arrest in T51B cells. In contrast, specific blockade of PP2A mimics p53-related responses to OA in T51B cells, suggesting that PP2A is the target for this response to OA.  相似文献   

17.
The entomopathogenic bacterium, Xenorhabdus nematophila, induces immunodepression in target insects and finally leads to lethal septicemia of the infected hosts. A hypothesis has been raised that the bacteria inhibit eicosanoid-biosynthesis pathway to interrupt immune signaling of the infected hosts. Here, we show direct evidence that X. nematophila inhibits the activity of phospholipase A2 (PLA2), the initial step in the eicosanoid-biosynthesis pathway. Inhibition of PLA2 was dependent on both incubation time with X. nematophila and the bacterial concentration in in vitro PLA2 preparations of Manduca sexta hemocytes. While living bacteria inhibited PLA2 activity, heat-killed X. nematophila rather increased PLA2 activity. X. nematophila secreted PLA2 inhibitor(s) which were detected in the organic, but not aqueous, extract of the bacterial culture medium. The PLA2 inhibitory activity of the organic extract was lost after heat treatment. These results clearly indicate that X. nematophila inhibits PLA2 activity, and thereby inhibits eicosanoid biosynthesis which leads to immunodepression of the infected hosts.  相似文献   

18.
Inactivation of Cdx2 by homologous recombination results in the development of forestomach epithelium at ectopic sites in pericaecal areas of the midgut of heterozygote mice. Local factors subsequently result in the secondary induction of tissues exhibiting an orderly sequence of tissue types between the ectopic forestomach tissue and the surrounding colon. Clonal analysis of this secondarily generated tissue using Y chromosome painting in chimaeric mice indicates that once differentiated to express Cdx2, host colonic epithelium can only form small intestinal-type epithelium, while Cdx2 mutant cells give rise to a succession of gastric-type tissue but never to a small intestine morphology. Our results indicate a difference in potency between forestomach and midgut precursor endodermal cells.  相似文献   

19.
The mechanisms by which a subset of mesodermal cells are committed to a nephrogenic fate are largely unknown. In this study, we have investigated the role of retinoic acid (RA) signalling in this process using Xenopus laevis as a model system and Raldh2 knockout mice. Pronephros formation in Xenopus embryo is severely impaired when RA signalling is inhibited either through expression of a dominant-negative RA receptor, or by expressing the RA-catabolizing enzyme XCyp26 or through treatment with chemical inhibitors. Conversely, ectopic RA signalling expands the size of the pronephros. Using a transplantation assay that inhibits RA signalling specifically in pronephric precursors, we demonstrate that this signalling is required within this cell population. Timed antagonist treatments show that RA signalling is required during gastrulation for expression of Xlim-1 and XPax-8 in pronephric precursors. Moreover, experiments conducted with a protein synthesis inhibitor indicate that RA may directly regulate Xlim-1. Raldh2 knockout mouse embryos fail to initiate the expression of early kidney-specific genes, suggesting that implication of RA signalling in the early steps of kidney formation is evolutionary conserved in vertebrates.  相似文献   

20.
We present a comprehensive mathematical model describing Helicobacter pylori interaction with the human gastric acid secretion system. We use the model to explore host and bacterial conditions that allow persistent infection to develop and be maintained. Our results show that upon colonization, there is a transient period (day 1-20 post-infection) prior to the establishment of persistence. During this period, changes to host gastric physiology occur including elevations in positive effectors of acid secretion (such as gastrin and histamine). This is promoted by reduced somatostatin levels, an inhibitor of acid release. We suggest that these changes comprise compensatory mechanisms aimed at restoring acid to pre-infection levels. We also show that ammonia produced by bacteria sufficiently buffers acid promoting bacteria survival and growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号