首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
银染增强的纳米金标记探针对微量核酸的检测   总被引:7,自引:3,他引:4  
本研究利用银染增强的纳米金技术建立了一种简单快速的核酸定量方法.该方法基于纳米金与烷巯基修饰的寡核苷酸分子共价键合作用,将纳米微粒报告基团标记在与靶核酸一端序列互补的寡核苷酸上,同时生物素化修饰另一端互补序列.靶核酸与两段寡核苷酸探针杂交后,借亲和素固定在酶标板孔内,通过纳米金催化的银染放大效应产生高灵敏的识别信号,适时记录其吸光度值从而实现核酸分子的定量.该检测方法检测单链核酸分子的灵敏度达0.1 fM,双链分子为10 fM.  相似文献   

2.
Here we report a real-time PCR-based method for determining the surface coverage of dithiol-capped oligonucleotides bound onto gold nanoparticles alone and in tandem with antibody. The detection of gold nanoparticle-bound DNA is accomplished by targeting the oligonucleotide with primer and probe binding sites, amplification of the oligonucleotide by PCR, and real-time measurement of the fluorescence emitted during the reaction. This method offers a wide dynamic range and is not dependant on the dissociation of the oligonucleotide strands from the gold nanoparticle surface; the fluorophore is not highly quenched by the gold nanoparticles in solution during fluorescence measurements. We show that this method and a fluorescence-based method give equivalent results for determining the surface coverage of oligonucleotides bound onto 13 or 30 nm gold nanoparticles alone and in tandem with antibody. Quantifying the surface coverage of immobilized oligonucleotides on metallic nanoparticle surfaces is important for optimizing the sensitivity of gold nanoparticle-based detection methods and for better understanding the interactions between thiol-functionalized oligonucleotides and gold nanoparticles.  相似文献   

3.
We enhanced the sensitivity of surface plasmon resonance biosensor by the conversion of the real-time direct binding immunoassay into the sandwich immunoassay, in which colloidal gold particles coated with anti-mouse IgG was used. By the immobilization of anti-mouse IgG onto the carboxymethyl dextran surface of thin gold film, the direct binding of analyte (mouse IgG) onto the sensor chip, and the injection of colloidal gold particles coated with antimouse IgG, about 100 times of sensitivity enhancement was obtained. This result suggests that nanoparticles, which has a high refractive index, homogeneous ultrafine structure and capability of size control, would be applicable for the detection of very small quantity of biomaterial.  相似文献   

4.
MicroRNA是一类存在于动植物体内的重要的、序列高度同源的基因表达转录后调节因子,近来对microRNA不同表达模式和调节作用的研究要求能够快速、灵敏、特异地检测痕量microRNA的方法.利用纳米金银染增强技术建立了一种简单快速的microRNA定量方法,以纳米金标记的寡核苷酸分子作为信号探针,以生物素标记寡核苷酸分子作为捕获探针,经链霉亲和素-生物素作用将靶序列捕获在固相载体酶标孔上,继而通过纳米金催化的银染增强放大效应产生高灵敏的识别信号,记录其吸光度值从而实现microRNA分子的定量.用该方法检测小鼠肝脏,脑组织中miR-122a和miR-128各自的含量及合成miR-122a,结果表明其在良好的线形范围(10 pmol/L~10 fmol/L)内最低检测限为10 fmol/L,能够特异地区别单核苷酸错配的靶microRNA.  相似文献   

5.
This paper presents a novel immunoassay that uses an electro-microchip to detect the immuno-reaction signal, gold nanoparticles (ANPs) as a label of antigen or antibody and as a catalyst for silver precipitation, and the silver enhancement reaction to magnify the detection signal. This study is based on the direct immunoassay (two-layer format) and the sandwich immunoassay (three-layer format). The ANPs were introduced into the electro-microchip by the specific binding of the antibodies-ANPs conjugates and then were coupled with silver enhancement to produce black spots of silver metal. The silver precipitation constructs a "bridge" between two electrodes of the electro-microchip allowing electrons to pass. The variation of impedance can be easily measured with a commercial LCR meter. Various gap sizes (20, 50, 100, and 200 microm) of the electrodes of electro-microchips were designed for the sensitivity study. The experimental data show that a chip with a 20microm gap has the highest sensitivity. There was a significant difference in impedance between the experiment sample and the negative control after 10 min of reaction time. The proposed method requires less time and fewer steps than the conventional enzyme-linked immunosorbent assay (ELISA). In addition, it shows a high detection sensitivity (10 microg/mL of 1st antibody (IgG) immobilized on slides and 1 ng/mL of antigen (protein A)). There is a clear distinction between the signal intensity and the logarithm of the sample concentration. The proposed new immunoassay method has potential applications in proteomics research and clinical diagnosis.  相似文献   

6.
A new amplification strategy of electrochemical signaling from antigen-antibody interactions was proposed via back-filling immobilization of horseradish peroxidase (HRP), immunoglobulin G antibodies (anti-IgG) and gold nanoparticles onto a three-dimensional sol-gel (3DSG)-functionalized biorecognition interface. The 3DSG sol-gel network was employed not only as a building block for the surface modification but also as a matrix for ligand functionalization. The signal-amplification was based on the bioelectrocatalytic reaction of the back-filling immobilization of HRP to H(2)O(2). With the non-competitive format, the formation of the antigen-antibody complex by a simple one-step immunoreaction between the immobilized anti-IgG and IgG in sample solution inhibited partly the active center of HRP, and decreased the immobilized HRP towards H(2)O(2) reduction. Under optimal conditions, the proposed immunosensor exhibited a good electrochemical behavior to IgG in a dynamic range of 1.12-162 ng/mL with a detection limit of 0.56 ng/mL (at 3delta). Moreover, the precision, reproducibility and stability of the as-prepared immunosensor were acceptable. Importantly, the proposed methodology would be valuable for diagnosis and monitoring of biomarkers and its metastasis.  相似文献   

7.
In recent years, CD surface modification methods are employed for immunoassay techniques that is called BioCD technology. In this research, first polycarbonate surface was activated with UV ozone and a hydrophilic surface was obtained. Contact angle measurements and atomic force microscopy technique confirmed the hydrophilic property of surface. After that, tetanus toxoid was immobilized on modified CD surface then specific monoclonal antibody, gold nanoparticles conjugated antibody, silver salt, and hydroquinone were added on modified CD surface. So a sandwiches complex as tetanus toxoid, tetanus toxoid monoclonal antibody, and gold nanoparticles conjugated antibody was obtained on CD surface. ATR result showed the immobilization of tetanus toxoid on modified CD surface. Localized surface plasmon resonance (LSPR) and DLS results confirmed the complex formation. Silver salt and hydroquinone were added for signal amplification. Detection limit of anti-tetanus toxoid IgG monoclonal antibody was obtained 0.005 IU/ml by LSPR and DLS techniques. The presented method increases the assay’s sensitivity. BioCD-based immunoassay for detection of anti-tetanus toxoid IgG monoclonal antibody could be applicable in development and fabrication of biomedical devices.  相似文献   

8.
Immunogold silver staining for light microscopy   总被引:5,自引:3,他引:2  
 The immunogold silver staining method (IGSS) is widely used as a sensitive and specific immunohistochemical visualisation technique. IGSS involves the specific deposition of metallic silver at the site of immunogold labelling and provides a means of visualisation at low magnification by light or electron microscopy. Silver developers for IGSS rapidly deposit metallic silver only at the site of heavy metals, including gold and silver, because of their catalytic activity. The developing solution contains the silver ions and reducing agent necessary for this reaction. Using different silver salts as ion donors and by selecting an appropriate temperature and pH, visible amounts of silver can be deposited in a few minutes at the site of colloidal gold labelling while little non-specific background deposition occurs. Inclusion of protective colloids in the solution can also be used to control the reaction. Although studies of the chemical basis of silver deposition around unlabelled colloidal gold date back to 1939, immunogold enhancement by silver was established in 1983. The IGSS method evolved from the combination of disparate photographic, histochemical and immunogold techniques which have been effectively combined and optimised over the last 10 years to provide a visualisation system which is well suited to many immunohistochemical studies. Accepted: 29 April 1996  相似文献   

9.
Gold@silica core–shell nanoparticles were prepared with various gold core diameters (ranging from 20 to 150 nm) and silica thicknesses (ranging from 10 to 30 nm). When the gold diameter is increased, the size dispersion became larger, leading to a broader plasmon band. Then, silicon carbide (SiC) nanoparticles were covalently immobilized onto silica to obtain hybrid (Au@SiO2) SiC nanoparticles. The absorption properties of these hybrid nanoparticles showed that an excess of SiC nanoparticles in the dispersion can be identified by a strong absorption in the UV region. Compared to SiC reference samples, a blue shift of the fluorescence emission, from 582 to 523 nm, was observed, which was previously attributed to the strong surface modification of SiC when immobilized onto silica. Finally, the influence of several elaboration parameters (gold diameter, silica thickness, SiC concentration) on fluorescence enhancement was investigated. It showed that the highest enhancements were obtained with 10 nm silica thickness, low concentration of SiC nanoparticles, and surprisingly, with a 20-nm gold core diameter. This last result could be attributed to the broad plasmon band of big gold colloids. In this case, SiC emission strongly overlapped gold absorption, leading to possible quenching of SiC fluorescence by energy transfer.  相似文献   

10.
11.
The available methods for double-labeling preembedding immunoelectron microscopy are highly limited because not only should the ultrastructure be preserved, but also the different antigens should be visualized by reaction end products that can be clearly distinguished in gray-scale images. In these procedures, one antigen is detected with 3,3′-diaminobenzidine (DAB) chromogen, resulting in a homogeneous deposit, whereas the other is labeled with either a gold-tagged immunoreagent, or DAB polymer, on the surface of which metallic silver is precipitated. The detection of the second antigen is usually impeded by the first, leading to false-negative results. The authors aimed to diminish this hindrance by a new silver intensification technique of DAB polymer, which converts the deposit from amorphous to granular. The method includes three major postdevelopmental steps: (1) treatment of nickel-enhanced DAB with sulfide, (2) silver deposition in the presence of hydroquinone under acidic conditions, and (3) precious metal replacement with gold thiocyanate. This new sulfide-silver-gold intensification of DAB (SSGI) allows a subsequent detection of other antigens using DAB. In conclusion, the new technique loads fine gold particles onto the DAB deposit at a very low background level, thereby allowing a reliable discernment between the elements stained for the two antigens at the ultrastructural level.  相似文献   

12.
A label-free immunosensor based on a modified gold electrode incorporated with silver (Ag) nanoparticles (NPs) to enhance the capacitive response to microcystin-LR (MCLR) has been developed. Anti-microcystin-LR (anti-MCLR) was immobilized on silver nanoparticles bound to a self-assembled thiourea monolayer. Interaction of anti-MCLR and MCLR were directly detected by capacitance measurement. Under optimum conditions, MCLR could be determined with a detection limit of 7.0pgl(-1) and linearity between 10pgl(-1) and 1mugl(-1). The immobilized anti-MCLR on self-assembled thiourea monolayer incorporated with silver nanoparticles was stable and good reproducibility of the signal could be obtained up to 43 times with an R.S.D. of 2.1%. Comparing to the modified electrode without silver nanoparticles it gave 1.7-fold higher sensitivity and lower limit of detection. The developed immunosensor was applied to analyze MCLR in water samples and the results were in good agreement with those obtained by high-performance liquid chromatography (HPLC) (P<0.05).  相似文献   

13.
A selective and sensitive gold nanoparticle-based electrochemical method for detection of hepatitis B virus DNA sequences was used. This method relies on the hybridization of amplified hepatitis B virus DNA strands with probes that are extended on paramagnetic beads. After separation of noncomplementary sequences, hybridized magnetic beads were treated with streptavidin-modified gold followed by silver enhancement. High selectivity and high sensitivity were obtained using electrochemical stripping detection of silver ions that were deposited on gold nanoparticles. With a signal/noise ratio of approximately 4.6, the detection limit was estimated to be 0.7ng/ml.  相似文献   

14.
A rapid, visual protein chip method for the detection of IgG against Treponema pallidum was developed using Staphylococcus protein A-modified gold nanoparticles. After recombinant T. pallidum antigen Tpp47 was arrayed on aldehyde-coated slides, qualitative and semiquantitative assay results were obtained from the hybridization signal and the subsequent gray stain values. The Tpp47-specific serum antibody was bound to immobilized Tpp47 antigen on the functionalized glass slides. The Staphylococcus protein A-modified gold nanoparticle probe exclusively recognized anti-Tpp47 IgG. The "sandwich" format hybridization signal was then amplified with silver staining, a high sensitivity visual detection technique. It took 3.5 h to prepare the detection protein chip, but only 20 min for real sample detection. The lowest titer of detectable antibody for this method was 1:128, which correlates to approx 1 ng/mL. Furthermore, the results can only be seen unaided, which drastically reduces the cost of detection, but can also be kept for a long time. The data also confirmed the proposed method's specificity, sensitivity, and convenience. As a result, the method could be applied as an alternative diagnostic tool in the clinical diagnosis of T. pallidum.  相似文献   

15.
A microarray approach based on surface-enhanced Raman spectroscopic (SERS) was developed for detection of spotted peptide, peptide-protein or protein-antibody interaction. The procedure involves the attachment of peptide-capped gold nanoparticles followed by silver deposition for signal enhancement. The attachment of the gold nanoparticles is achieved by standard avidin-biotin chemistry. The well-known biomolecular recognition pairs, IgG/protein A and biotin/avidin, were used to demonstrate proof-of-concept of the SERS assay. Detection limits of 10 and 100 fg per microarray spot were obtained respectively for the peptide and protein arrays. For the protein in solution, a limit of 0.1 microg/mL is reported. Furthermore, enzyme activity of the kinase (PKA) is also detected with high specificity for an established peptide substrate (kemptide) on the microarray spots.  相似文献   

16.
A highly sensitive electrochemical immunoassay strategy based on the combination of ferrocene (Fc) label and poly(o-phenylenediamine) (PPD) film/gold nanoparticle (GNP) amplification for the detection of immunospecies is proposed using human IgG as the model analyte. A gold electrode is firstly modified with an electropolymerized film of poly(o-phenylenediamine), which provides a stable matrix with abundant amino-groups for the fabrication of sensing interface. Using glutaraldehyde as a cross-linker, cystamine is coupled onto the modified electrode. Subsequently, gold nanoparticle monolayer is assembled onto the resulting surface. Making use of the unique properties of gold nanoparticles, antibodies can be self-assembled onto the surface-confined gold nanoparticles via amine-Au affinity with a high loading amount and reserve high immunological activity. After the introduction of model analyte, the ferrocene (Fc)-labeled antibody is immobilized on the sensing interface by antibody-antigen specific reaction, resulting in a redox current signal. The peak current is proportional to the amount of the analyte. Under the optimized experimental conditions, the proposed sensing strategy provides a wide linear dynamic range from 25 to 1000pg/mL with a low detection limit of 10pg/mL. In addition, good reproducibility, high selectivity and stability are achieved. In particular, the extremely high stability of both poly(o-phenylenediamine) and gold nanoparticle monolayer allows the designed biosensing interface to withstand harsh regeneration treatment, making it reusable.  相似文献   

17.
An ultrasensitive and highly specific electrochemical aptasensor for detection of thrombin based on gold nanoparticles and thiocyanuric acid is presented. For this proposed aptasensor, aptamerI was immobilized on the magnetic nanoparticles, aptamerII was labeled with gold nanoparticles. The magnetic nanoparticle was used for separation and collection, and gold nanoparticle offered excellent electrochemical signal transduction. Through the specific recognition for thrombin, a sandwich format of magnetic nanoparticle/thrombin/gold nanoparticle was fabricated, and the signal amplification was further implemented by forming network-like thiocyanuric acid/gold nanoparticles. A significant sensitivity enhancement had been obtained, and the detection limit was down to 7.82 aM. The presence of other proteins such as BSA and lysozyme did not affect the detection of thrombin, which indicates a high specificity of thrombin detection could be achieved. This electrochemical aptasensor is expected to have wide applications in protein monitoring and disease diagnosis.  相似文献   

18.
We investigate the feasibility of coupling the quartz crystal microbalance (QCM) with magnetic separation for on-line analysis. A flow cell was integrated with QCM and magnetic force for the analysis of magnetic and nonmagnetic samples. The resonant frequency change (Deltaf) of QCM was related to the amount of deposited magnetic nanoparticles. This experiment demonstrates that QCM can be used as an on-line detector for magnetic separation. The QCM also gives a characteristic response of the binding between the streptavidin and biotin labeled on the magnetic nanoparticles. Biotin-labeled magnetic nanoparticles were flowed through a gold electrode of QCM to deposit as a matrix for selective capturing streptavidin. The resonant frequency change of QCM was proportional to the amounts of streptavidin captured by biotin. This technique can provide a simple, economic, and automatic method for on-line detection of biomarkers.  相似文献   

19.
A renewable, site-selective immobilization platform of microelectrode array (MEA) for multiplexed immunoassays has been initially developed using pencil graphite particles coated with gold layers as microelectrodes. The graphite particles available on the common pencil were utilized for directing the electro-deposition of gold layers with uniform microstructures which displayed a well-defined sigmoidal voltammetric response. In the concept-of-proof experiments, the resulting MEA platform was modified with functionalized monolayer, on which anti-human IgG antibodies could be stably immobilized in a site-selective way through binding chemistry to selectively capture human IgG antigens from the sample media. The subsequent introduction of anti-human IgG antibodies conjugated with 15 nm electro-active gold nanoparticles to recognize the captured IgG proteins resulted in a significant decrease in the interfacial electron-transfer resistance. High sensitive electrochemical quantification by gold nanoparticle-amplified impedance responses could thus be achieved. Experimental results show that the developed MEA sensor can allow for the detection of human IgG with wide linear range (0.05–100 ng ml−1) and sensitivity over 103 larger than that of the conventional, bulk gold electrode. The rapid regeneration of the used MEA platform can additionally be realized by a simple electrochemical treatment. The high selectivity of four individually addressable MEA platforms for multiple antigens in a single sample has been further demonstrated in the multiplexed immunoassay experiments. Such a site-selective immobilization strategy of MEA platform may open a new door towards the development of various simple, sensitive, cost-effective, and reusable biological sensors and biochips.  相似文献   

20.
A novel third-generation biosensor for hydrogen peroxide (H2O2) was developed by self-assembling gold nanoparticles to hollow porous thiol-functionalized poly(divinylbenzene-co-acrylic acid) (DVB-co-AA) nanospheres. At first, a cleaned gold electrode was immersed in hollow porous thiol-functionalized poly(DVB-co-AA) nanosphere latex to assemble the nanospheres, then gold nanoparticles were chemisorbed onto the thiol groups of the nanospheres. Finally, horseradish peroxidase (HRP) was immobilized on the surface of the gold nanoparticles. The immobilized horseradish peroxidase exhibited direct electrochemical behavior toward the reduction of hydrogen peroxide. The resulting biosensor showed a wide linear range of 1.0 microM-8.0mM and a detection limit of 0.5 microM estimated at a signal-to-noise ratio of 3. Moreover, the studied biosensor exhibited high sensitivity, good reproducibility, and long-term stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号