首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The kinetic investigation of hyaluronidases using physiologically relevant hyaluronic acid (HA or hyaluronan) substrate will provide useful and important clues to their catalytic behavior and function in vivo. We present here a simple and sensitive method for kinetic measurement of recombinant human hyaluronidase PH20 (rHuPH20) on HA substrates with sizes ranging from 90 to 752 kDa. The method is based on 2-aminobenzamide labeling of hydrolyzed HA products combined with separation by size exclusion–ultra performance liquid chromatography coupled with fluorescence detection. rHuPH20 was found to follow Michaelis–Menten kinetics during the initial reaction time. Optimal reaction rates were observed in the pH range of 4.5–5.5. The HA substrate size did not have significant effects on the initial rate of the reaction. By studying HA substrates of 215, 357, and 752 kDa, the kinetic parameters Km, Vmax, and kcat were determined to be 0.87–0.91 mg/ml, 1.66–1.74 nM s−1, and 40.5–42.4 s−1, respectively. This method allows for direct measurement of kinetics using physiologically relevant HA substrates and can be applied to other hyaluronidase kinetic measurements.  相似文献   

2.
A novel assay method was investigated for urease (EC 3.5.1.5) from Pseudomonas aeruginosa and Canavalia ensiformis by Fourier transform infrared spectroscopy. This enzyme catalyzed the hydrolysis of urea in phosphate buffer in deuterium oxide (2H2O). The intensities of the bicarbonate bands maxima at 1625 and 1365 cm−1 and of the amide I band at 1605 cm−1 were measured as a function of time to study the kinetics of urea hydrolysis. The extinction coefficients ε of urea and bicarbonate were determined to be 0.72, 0.48, and 0.56 mM−1 cm−1 at 1625, 1605, and 1365 cm−1, respectively. The initial velocity is proportional to the enzyme concentration by using the ureases from both C.ensiformis and P. aeruginosa. The kinetic constants (Vmax, Km, and Kcat) determined by Lineweaver-Burk plot were 532.2  U mg−1 protein, 6.4 mM, and 806.36 s−1, respectively. These data are in agreement with the results obtained by a spectrophotometric method using a linked assay based on glutamate dehydrogenase in aqueous media. Therefore, this spectroscopic method is highly suited to assay for urease activity and its kinetic parameters by using either cell-free extracts or purified enzyme preparations with an additional advantage of performing a real-time measurement of urease activity.  相似文献   

3.
Stoichiometry of the electrocatalytical cycle of cytochrome P450 2B4 was studied in kinetic mode according to bielectrode scheme. Graphite screen-printed electrodes with immobilized cytochrome P450 2B4 were used as the operating electrode (at the potential E0′ = −450 mV) and electrodes, modified with cytochrome c (E0′ = −50 mV) or Prussian Blue (E0′ = 0), as measuring electrodes (for H2O2) and Clark-type electrode (for O2). Benzphetamine N-demethylation rate was 17 ± 3 nmol/nmol of enzyme/min, peroxide production was 4.8 ± 0.7 nmol/nmol of enzyme/min (substrate-free system), 3.3 ± 0.6 nmol/nmol of enzyme/min (0.5 mM benzphetamine), the oxygen consumption rate by Р450 2В4 was 19.4 ± 0.6 nmol/nmol of enzyme/min (in the presence of benzphetamine), 4.8 ± 0.4 nmol/nmol of enzyme/min (without substrate). Based on stoichiometry of P450 electrocatalysis adequacy of electrochemical reduction and P450-monooxygenase system was revealed.  相似文献   

4.
A signal amplificatory electrochemical immunoassay with biotin-streptavidin conjunction and multienzymatic-based substrate recycling was developed in this work. Biotinylated secondary antibody (bio-IgG) was preliminarily assembled onto the immunosensor interface based on the sandwich format. Streptavidin was then loaded based on biotin-streptavidin conjunction. Owing to four identical binding sites of streptavidin to biotin, amounts of biotinylated alkaline phosphatase (bio-AP) were attached, and this improved the catalytic performance of the proposed immunosensor. Under the enzyme catalysis of AP, the electroinactive p-aminophenylphosphate (PAPP) substrate was rapidly hydrolyzed into the electroactive p-aminophenol (PAP) product, which next oxidized at the electrode surface into p-quinoneimine (PQI). In the presence of diaphorase (DI), PQI was reduced back to PAP, leading to a reversible cycle of PAP. Then the oxidized state of DI was regenerated into its reduced native state by its natural substrate, nicotinamide adenine dinucleotide (NADH). With the several amplification factors mentioned above, a wider linear ranged from 10−14 to 10−5 g ml−1 was acquired with a relatively low detection limit of 3.5 × 10−5 g ml−1 for human IgG. In addition, the nonspecific adsorption of proposed immunosensor was also investigated here.  相似文献   

5.
6.
The inhibition of horse serum butyrylcholinesterase (EC 3.1.1.8) by the organophosphorus compound paraoxon (diethyl 4-nitrophenyl phosphate) was studied by flow microcalorimetry at 37 °C in Tris buffer (pH 7.5) using a modification of the kinetic model described by Stojan and coworkers [J. Stojan, V. Marcel, S. Estrada-Mondaca, A. Klaebe, P. Masson, D. Fournier, A putative kinetic model for substrate metabolisation by Drosophila acetylcholinesterase, FEBS Lett. 440 (1998) 85-88]. The reversible steps of the inhibition were studied in the mixing cell of the calorimeter, whereas the irreversible step was studied in the flow-through cell. A new pseudo-first-order approximation was developed to allow the kinetic analysis of inhibition progress curves in the presence of substrate when a significant amount of substrate is transformed. This approximation also allowed one to compute an analytical expression of the calorimetric curves using a gamma distribution to describe the impulse response of the calorimeter. Fitting models to data by nonlinear regression, with simulated annealing as a stochastic optimization method, allowed the determination of all kinetic parameters. It was found that paraoxon binds to both the enzyme and acyl-enzyme, but with weak affinities (Ki = 0.123 mM and Ki = 5.5 mM). A slight activation was observed at the lowest paraoxon concentrations and was attributed to the binding of the substrate to the enzyme-inhibitor complex. The bimolecular inhibition rate constant ki = 2.8 × 104 M−1 s−1 was in agreement with previous studies. It is hoped that the methods developed in this work will contribute to extending the application range of microcalorimetry in the field of irreversible inhibitors.  相似文献   

7.
This work describes the electrochemical and electrocatalytic properties of carbon ceramic electrode (CCE) modified with lead nitroprusside (PbNP) nanoparticles as a new electrocatalyst material. The structure of deposited film on the CCE was characterized by energy dispersive X-ray (EDX), Fourier transform infrared (FTIR), and scanning electron microscopy (SEM). The cyclic voltammogram (CV) of the PbNP modified CCE showed two well-defined redox couples due to [Fe(CN)5NO]3−/[Fe(CN)5NO]2− and PbIV/PbII redox reactions. The modified electrode showed electrocatalytic activity toward the oxidation of l-cysteine and was used as an amperometric sensor. Also, to reduce the fouling effect of l-cysteine and its oxidation products on the modified electrode, a thin film of Nafion was coated on the electrode surface. The sensor response was linearly changed with l-cysteine concentration in the range of 1 × 10−6 to 6.72 × 10−5 mol L−1 with a detection limit (signal/noise ratio [S/N] = 3) of 0.46 μM. The sensor sensitivity was 0.17 μA (μM)−1, and some important advantages such as simple preparation, fast response, good stability, interference-free signals, antifouling properties, and reproducibility of the sensor for amperometric determination of l-cysteine were achieved.  相似文献   

8.
Estrogenic activities of ethanol extract and its active components from Psoralea corylifolia L. were studied using various in vitro assays. The main components from ethanol extract were analyzed to be bakuchiol, psoralen, isobavachalcone, isobavachromene, and bavachinin. In a fractionation procedure, hexane and chloroform fractions showed estrogenic activity in yeast transactivation assay and E-screen assay. In yeast transactivation assay, ethanol extract, hexane, and chloroform fractions showed significantly higher activities at a concentration of 1.0 ng/ml, and bakuchiol at the concentration of 10−6 M was showed the highest activity, especially, which was higher than genistein at the same concentration. In E-screen assay, cell proliferation of bakuchiol (10−6 M) showed similar estrogenic activity with genistein (10−6 M). In ER binding assay, bakuchiol displayed the strongest ER-binding affinity (IC50 for ERα = 1.01 × 10−6 M, IC50 for ERβ = 1.20 × 10−6 M) and bakuchiol showed five times higher affinity for ERα than for ERβ.  相似文献   

9.
In this work, we present an electrochemical DNA sensor based on silver nanoparticles/poly(trans-3-(3-pyridyl) acrylic acid) (PPAA)/multiwalled carbon nanotubes with carboxyl groups (MWCNTs-COOH) modified glassy carbon electrode (GCE). The polymer film was electropolymerized onto MWCNTs-COOH modified electrode by cyclic voltammetry (CV), and then silver nanoparticles were electrodeposited on the surface of PPAA/MWCNTs-COOH composite film. Thiol group end single-stranded DNA (HS-ssDNA) probe was easily covalently linked onto the surface of silver nanoparticles through a 5′ thiol linker. The DNA hybridization events were monitored based on the signal of the intercalated adriamycin by differential pulse voltammetry (DPV). Based on the response of adriamycin, only the complementary oligonucleotides gave an obvious current signal compared with the three-base mismatched and noncomplementary oligonucleotides. Under the optimal conditions, the increase of reduction peak current of adriamycin was linear with the logarithm of the concentration of the complementary oligonucleotides from 9.0 × 10−12 to 9.0 × 10−9 M with a detection limit of 3.2 × 10−12 M. In addition, this DNA sensor exhibited an excellent reproducibility and stability during DNA hybridization assay.  相似文献   

10.

Background

Mammalian GPx7 is a monomeric glutathione peroxidase of the endoplasmic reticulum (ER), containing a Cys redox center (CysGPx). Although containing a peroxidatic Cys (CP) it lacks the resolving Cys (CR), that confers fast reactivity with thioredoxin (Trx) or related proteins to most other CysGPxs.

Methods

Reducing substrate specificity and mechanism were addressed by steady-state kinetic analysis of wild type or mutated mouse GPx7. The enzymes were heterologously expressed as a synuclein fusion to overcome limited expression. Phospholipid hydroperoxide was the oxidizing substrate. Enzyme–substrate and protein–protein interaction were analyzed by molecular docking and surface plasmon resonance analysis.

Results

Oxidation of the CP is fast (k+ 1 > 103 M− 1 s− 1), however the rate of reduction by GSH is slow (k′+ 2 = 12.6 M− 1 s− 1) even though molecular docking indicates a strong GSH–GPx7 interaction. Instead, the oxidized CP can be reduced at a fast rate by human protein disulfide isomerase (HsPDI) (k+ 1 > 103 M− 1 s− 1), but not by Trx. By surface plasmon resonance analysis, a KD = 5.2 μM was calculated for PDI–GPx7 complex. Participation of an alternative non-canonical CR in the peroxidatic reaction was ruled out. Specific activity measurements in the presence of physiological reducing substrate concentration, suggest substrate competition in vivo.

Conclusions

GPx7 is an unusual CysGPx catalyzing the peroxidatic cycle by a one Cys mechanism in which GSH and PDI are alternative substrates.

General significance

In the ER, the emerging physiological role of GPx7 is oxidation of PDI, modulated by the amount of GSH.  相似文献   

11.
A thiolated oligonucleotide having three ferrocenes was immobilized on a gold electrode through the sulfur-gold linkage. This electrode showed a current response based on the redox reaction of the ferrocene moieties and this response was decreased after treatment with deoxyribonuclease I (DNase I), suggesting the disappearance of the ferrocene moieties on the electrode by the DNase I digestion. A linear correlation between i0 and i, which are current peaks before and after DNase I treatment, respectively, was observed and this slope was decreased with increase in the amount of DNase I. No current decrease was observed in the presence of EDTA or RNase A instead of DNase I. These results suggested that the current decrease responded specifically to the amount of DNase I and this electrode could be used for an electrochemical DNase I assay. Under the optimum conditions of DNase I digestion at 37 °C for 30 min, a quantitative analysis could be achieved in the range of 10−4-10−2 units/μl of DNase I.  相似文献   

12.
A new thiol-reactive electrophilic, disubstituted rhodamine-based fluorogenic probe (bis-2,4-dinitrobenzenesulfonyl rhodamine [BDR]) with very high quantum yield was synthesized and described recently [A. Shibata et al., Bioorg. Med. Chem. Lett. 18 (2008) 2246-2249]. Because hydrophobic electrophiles are often conjugated by glutathione transferases, the BDR or monosubstituted rhodamine derivatives (2,4-dinitrobenzenesulfonyl rhodamine [DR]) were tested with microsomal glutathione transferase 1 (MGST1) and shown to function as substrates. The kinetic parameters for purified enzyme and DR were kcat = 0.075 ± 0.005 s−1 and Km = 21 ± 3 μM (kcat/Km = 3.6 × 103 ± 5.6 × 102 M−1 s−1), giving a rate enhancement of 106 compared with the nonenzymatic reaction. In cells overexpressing MGST1, the addition of BDR caused a time-dependent increase of fluorescence compared with control cells. Preincubating the cells with a thiol reagent (N-ethylmaleimide) abolished the fluorescent signal. By using DR, we could determine the MGST1 activity in whole cell extracts with high sensitivity. In addition, the activity could be increased by thiol reagents (a hallmark of MGST1). Thus, we have identified a new fluorogenic substrate for MGST1 that will be a useful tool in the study of this enzyme and related enzymes.  相似文献   

13.
The electrochemical impedance spectroscopy (EIS) technique has been used as a sensitive method to explore the effect of antibacterial molecules on immobilized bacteria and biofilm formation. In this work, we describe the electrochemical spectroscopy as a powerful method to monitor the effect of Chlorhexidine Digluconate (CHX-Dg) on polyelectrolyte immobilized Escherichia coli K12 MG1655 and the kinetics of cell adhesion on gold electrodes. The experimental impedance data were modelised with a Zview program to find the best equivalent electrical circuit and analyse its parameter's properties. Polyelectrolyte multilayer formation on the electrode surface and bacteria immobilization greatly increased the electron-transfer resistance (Ret) and reduced the constant phase element (CPEdl). The effect of CHX-Dg was studied in a 0.5 × 10−4 mmol l−1 to 0.5 mmol l−1 range. The relation between the evolution of Ret and CHX-Dg concentration was found to be negatively correlated. When CHX-Dg was added, the electrochemical monitoring of the bacterial kinetic adhesion showed that the electrode's capacity (CP) variation remained stable, demonstrating that the addition of CHX-Dg in the broth inhibited bacterial adhesion.  相似文献   

14.
This work presents a novel electrochemical assay for the collective measurement of nitric oxide (NO) and its metabolites nitrite (NO2) and nitrate (NO3) in volume miniaturized sample at low cost using copper(II) chlorophyllin (CuCP) modified sensor electrode. Zinc oxide (ZnO) incorporated screen printed carbon electrode (SPCE) was used as a host matrix for the immobilization of CuCP. The morphological changes of the ZnO and CuCP modified electrodes were investigated using scanning electron microscopy. The electrochemical characterization of CuCP–ZnO–SPCE exhibited the characteristic quasi-reversible redox peaks at the potential +0.06 V versus Ag/AgCl. This biosensor electrode showed a wide linear range of response over NO concentrations from 200 nM to 500 μM with a detection limit of 100 nM and sensitivity of 85.4 nA μM−1. Furthermore, NO2 measurement showed linearity of 100 nM to 1 mM with a detection limit of 100 nM for NO2 and sensitivity of 96.4 nA μM−1. Then, the concentration of NO3 was measured after its enzymatic conversion into NO2. Using this assay, the concentrations of NO, NO2, and NO3 present in human plasma samples before and after beetroot supplement were estimated using suitable membrane coated CuCP–ZnO–SPCE and validated with the standard Griess method.  相似文献   

15.
Adenosine phosphorylase, a purine nucleoside phosphorylase endowed with high specificity for adenine nucleosides, was purified 117-fold from vegetative forms of Bacillus cereus. The purification procedure included ammonium sulphate fractionation, pH 4 treatment, ion exchange chromatography on DEAE-Sephacel, gel filtration on Sephacryl S-300 HR and affinity chromatography on N6-adenosyl agarose. The enzyme shows a good stability to both temperature and pH. It appears to be a homohexamer of 164 ± 5 kDa. Kinetic characterization confirmed the specificity of this phosphorylase for 6-aminopurine nucleosides. Adenosine was the preferred substrate for nucleoside phosphorolysis (kcat/Km 2.1 × 106 s− 1 M− 1), followed by 2′-deoxyadenosine (kcat/Km 4.2 × 105 s− 1 M− 1). Apparently, the low specificity of adenosine phosphorylase towards 6-oxopurine nucleosides is due to a slow catalytic rate rather than to poor substrate binding.  相似文献   

16.
This article describes a simple fluorescence method for the determination of tetradecyltrimethylammonium mono-oxygenase (TTAB mono-oxygenase) activity involving N-dealkylation of tetradecyltrimethylammonium bromide with concomitant production of trimethylamine (TMA). Activity was determined by measuring the formation of TMA using the morin reagent and aluminum (Al). Morin reacts with Al to form a fluorescent complex, Al-morin. In the presence of TMA, Al is tightly associated with TMA and cannot be sequestered by morin, thus providing evidence for formation of the Al-TMA complex. The concentration of TMA is estimated by calibration graphs constructed by plotting the fluorescence intensity of the Al-morin complex versus TMA concentration. The fluorescence intensities of the Al-morin complexes quenched by TMA are linearly dependent on both the time of the TTAB mono-oxygenase reaction and the amount of protein used in the reaction. The kinetic behavior is characterized by K0.5 = 4.26 × 10−4 M, and the apparent Hill coefficient (napp) = 2.24. These values are both comparable to those determined by GC-MS (K0.5 = 4.41 × 10−4 M and napp = 2.35). The advantages of this assay include rapid and efficient implementation and potential employment for routine accurate determinations of TTAB mono-oxygenase activity over a wide range of substrate concentrations.  相似文献   

17.
Biochemical studies to elucidate the structural basis for xyloglucan specificity among GH12 xyloglucanases are lacking. Accordingly, the substrate specificity of a GH12 xyloglucanase from Aspergillus niger (AnXEG12A) was investigated using pea xyloglucan and 12 xylogluco-oligosaccharides, and data were compared to a structural model of the enzyme. The specific activity of AnXEG12A with pea xyloglucan was 113 μmol min−1 mg−1, and apparent kcat and Km values were 49 s−1 and 0.54 mg mL−1, respectively. These values are similar to previously published results using xyloglucan from tamarind seed, and suggest that substrate fucosylation does not affect the specific activity of this enzyme. AnXEG12A preferred xylogluco-oligosaccharides containing more than six glucose units, and with xylose substitution at the −3 and +1 subsites. The specific activities of AnXEG12A on 100 μM XXXGXXXG and 100 μM XLLGXLLG were 60 ± 4 and 72 ± 9 μmol min−1 mg−1, respectively. AnXEG12A did not hydrolyze XXXXXXXG, consistent with other data that demonstrate the requirement for an unbranched glucose residue for hydrolysis by this enzyme.  相似文献   

18.
Fiber-optic biosensors have been studied intensively because they are very useful and important tools for monitoring biomolecular interactions. Here we describe a fluorescence detection fiber-optic biosensor (FD-FOB) using a sandwich assay to detect antibody-antigen interaction. In addition, the quantitative measurement of binding kinetics, including the association and dissociation rate constants for immunoglobulin G (IgG)/anti-mouse IgG, is achieved, indicating 0.38 × 106 M−1 s−1 for ka and 3.15 × 10−3 s−1 for kd. These constants are calculated from the fluorescence signals detected on fiber surface only where the excited evanescent wave can be generated. Thus, a confined fluorescence-detecting region is achieved to specifically determine the binding kinetics at the vicinity of the interface between sensing materials and uncladded fiber surface. With this FD-FOB, the mathematical deduction and experimental verification of the binding kinetics in a sandwich immunoassay provide a theoretical basis for measuring rate constants and equilibrium dissociation constants. A further measurement to study the interaction between human heart-type fatty acid-binding protein and its antibody gave the calculated kinetic constants ka, kd, and KD as 8.48 × 105 M−1 s−1, 1.7 × 10−3 s−1, and 2.0 nM, respectively. Our study is the first attempt to establish a theoretical basis for the florescence-sensitive immunoassay using a sandwich format. Moreover, we demonstrate that the FD-FOB as a high-throughput biosensor can provide an alternative to the chip-based biosensors to study real-time biomolecular interaction.  相似文献   

19.
Bovine serum albumin antibodies (aBSA) have been screened from whole leporine anti serum on a biophotonic array. The array was initially printed with seed gold nanoparticles into a 96-spot configuration, and 130-nm gold nanoparticles were synthesised in situ on the surface of each spot. The gold nanoparticle surface was then functionalized with the proteins bovine serum albumin (BSA), fibrinogen, and immunoglobulin G (IgG) and with the amino acid glycine. The concentration of aBSA in the whole serum was determined using a kinetic analysis of the time-dependent light scattering from the nanoparticles. The aBSA-BSA kinetic parameters derived from the array are ka = (1.3 ± 0.3) × 105 M−1 s−1, kd = (4 ± 2) × 10−4 s−1, and KD = 3 nM, which compare favorably with those from continuous gold surfaces. The ultimate sensitivity of the array reader to the bulk refractive index (RI) is 1 × 10−4 refractive index units (RIU), corresponding to 1 μg ml−1 for aBSA. The nanoparticles appear to be more sensitive than the continuous gold surface to the aBSA binding event from whole serum, and this is interpreted in terms of the difference in RI contrast in the plasmon fields.  相似文献   

20.
In the present study, a gold nanoparticle-modified gold electrode (nanogold electrode) was used to develop a novel fluorescein electrochemical DNA biosensor based on a target-induced conformational change. The nanogold electrode was obtained by electrodepositing gold nanoparticles onto a bare gold electrode. This modification not only immobilized probe oligonucleotides, but also adsorbed fluorescein onto the surface of the gold nanoparticles to form an “arch-like” structure. This article compares the electrochemical signal changes caused by the hybridization of “arch-like” DNA on nanogold electrode and linear DNA on bare gold electrode. The results showed that the adsorption effect of nanogold can enhance the sensitivity of the sensor. The linear range of target ssDNA is from 2.0 × 10−9 M to 2.0 × 10−8 M with a correlation coefficient of 0.9956 and detection limit (3σ) of 7.10 × 10−10 M. Additionally, the specificity and hybridization response of this simple sensor were investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号