首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The degenerate primer-based sequencing Was developed by a synthesis method(DP-SBS)for high-throughput DNA sequencing,in which a set of degenerate primers are hybridized on the arrayed DNA templates and extended by DNA polymerase on microarrays.In this method,adifferent set of degenerate primers containing a give nnumber(n)of degenerate nucleotides at the 3'-ends were annealed to the sequenced templates that were immobilized on the solid surface.The nucleotides(n 1)on the template sequences were determined by detecting the incorporation of fluorescent labeled nucleotides.The fluorescent labeled nucleotide was incorporated into the primer in a base-specific manner after the enzymatic primer extension reactions and nine-base length were read out accurately.The main advanmge of the DP-SBS is that the method only uses very conventional biochemical reagents and avoids the complicated special chemical reagents for removing the labeled nucleotides and reactivating the primer for further extension.From the present study,it is found that the DP-SBS method is reliable,simple,and cost-effective for laboratory-sequencing a large amount of short DNA fragments.  相似文献   

2.
Rapid DNA sequencing based upon single molecule detection   总被引:1,自引:0,他引:1  
We are developing a laser-based technique for the rapid sequencing of 40-kb or larger fragments of DNA at a rate of 100 to 1000 bases per second. The approach relies on fluorescent labeling of the bases in a single fragment of DNA, attachment of this labeled DNA fragment to a support, movement of the supported DNA fragment into a flowing sample stream, and detection of individual fluorescently labeled bases as they are cleaved from the DNA fragment by an exonuclease. The ability to sequence large fragments of DNA will significantly reduce the amount of subcloning and the number of overlapping sequences required to assemble megabase segments of sequence information.  相似文献   

3.
New DNA sequencing techniques are currently being developed using single-molecule fluorescence-based detection of enzymatic double-strand synthesis. Such application requires surface architectures on which single-stranded templates can be immobilized. A further important attribute is a very low tendency to attract fluorescently labeled bases nonspecifically. On this account, the adsorption behaviour of Cy5-dNTPs on a variety of surface coatings was studied by performing real-time measurements of the DNA synthesis using a supercritical angle fluorescence biosensor. It is demonstrated that polyacrylic acid coatings are an excellent choice to minimize the nonspecific binding of the bases.  相似文献   

4.
Neely RK  Deen J  Hofkens J 《Biopolymers》2011,95(5):298-311
The technologies associated with DNA sequencing are rapidly evolving. Indeed, single-molecule DNA sequencing strategies are cheaper and faster than ever before. Despite this progress, every sequencing platform to date relies on reading the genome in small, abstract fragments, typically of less than 1000 bases in length. The overarching aim of the optical map is to complement the information derived from DNA sequencing by providing long-range context on which these short sequence reads can be built. This is typically done using an enzyme to target and modify at short DNA sequences of, say, six bases in length throughout the genome. By accurately placing these short pieces of sequence on long genomic DNA fragments, up to several millions of bases in length, a scaffold for sequence assembly can be obtained. This review focuses on three enzymatic approaches to optical mapping. Optical mapping was first developed using restriction enzymes to sequence-specifically cleave DNA that is immobilized on a surface. More recently, nicking enzymes have found application in the sequence-specific fluorescent labeling of DNA for optical mapping. Such covalent modification allows the DNA to be imaged in solution, and this, in combination with developing nanofluidic technologies, is enabling new high-throughput approaches to mapping. And, finally, this review will discuss the recent development of mapping with subdiffraction-limit precision using methyltransferase enzymes to label the DNA with an ultrahigh density.  相似文献   

5.
We report a new DNA sequencing-by-synthesis method in which the sequences of DNA templates, hybridized to a surface-immobilized array of DNA primers, are determined by sensing the number of nucleotides by which the primers in each array spot are extended in sequential DNA polymerase-catalyzed nucleotide incorporation reactions, each with a single fluorescein-labeled deoxyribonucleoside triphosphate (dNTP) species. The fluorescein label is destroyed after each readout by a photostimulated reaction with diphenyliodonium chloride. A DNA polymerase with enhanced ability to incorporate, and to extend beyond, modified nucleotides is used. Self-quenching of adjacent fluorescein labels, which impedes readout of homopolymeric runs, is avoided by diluting the labeled dNTP with unlabeled reagent. Misincorporation effects have been quantified and are small; however, low-level contamination of dNTPs with other nucleotides mimics misincorporation and can produce significant false-positive signals. These impurities are removed by polymerase-catalyzed incorporation into complementary "cleaning duplexes." Here, we demonstrate the accurate sequence readout for a small array of known DNA templates, the ability to quantify homopolymeric runs, and a short sequencing example of sections of the wild-type and mutant BRCA1 gene. For a 20,000-spot array, readout rates in excess of 6000 bases per minute are projected.  相似文献   

6.
A series of oligomeric double and triple helical DNAs with irregular sequences of homopurine and homopyrimidine strands were prepared. DNA triplexes were identified by CD spectroscopy and thermal denaturation profiles (biphasic helix-coil transition). Condensation of oligonucleotides on single and double-stranded DNA templates was performed using water-soluble carbodiimide, phosphodiester and pyrophosphate internucleotide bonds being newly formed. Such chemical ligation proved to be a sensitive monitor of changes in the sugar-phosphate backbone resulting from conversion of double to triple helix and of third-strand binding.  相似文献   

7.
相邻的反向重复DNA片段有形成单链内二级结构的倾向,属于一种测序困难的DNA模板。解决RNAi载体插入的反向重复片段的测序问题,为该类载体正确性的测序验证奠定基础。采用常规分子克隆方法构建表达小麦TaATG2串联反向重复片段的RNAi载体,设计2种策略对经菌落PCR初步鉴定的载体进行测序验证:一种是以完整的载体质粒为模板进行测序;另一种是先对载体进行酶切处理,切除反向重复片段中的一个后对保留另一个片段的线性载体进行测序。结果表明,第一种测序策略受到串联反向重复片段形成的单链内部二级结构的影响,测序信号在反向重复片段处出现衰减或乱峰,无法读取序列。第二种测序策略排除了2个反向重复片段之间的干扰,保留在载体上的片段测序信号清晰,序列准确。采用酶切切除一个片段后进行测序的方法,经过2次酶切和2次测序可以有效地对载体上的2个反向重复片段分别进行序列测定,进而确认构建载体的正确性。  相似文献   

8.
Deoxyribonucleic acid (DNA) extracted from herpes simplex virions forms multiple partially overlapping bands upon denaturation and centrifugation in alkaline sucrose density gradients. The most rapidly sedimenting DNA corresponds to an intact strand 48 x 10(6) daltons in molecular weight. In this study, we analyzed the DNA fragments generated in alkaline sucrose gradients with respect to size and uniqueness of base sequences. The distribution of sedimentation constants of the various fragments obtained in numerous gradients showed that the fragments smaller than the whole strand fall into six distinct classes ranging in molecular weight from 10 x 10(6) to 39 x 10(6) daltons. Four types of DNA strands can be reconstructed from the whole strand and six fragments on the basis of their molecular weights. DNA from each of the bands self-hybridizes to a lower extent than unfractionated viral DNA, indicating that each of the bands preferentially contains sequences from one unique strand. The data permit reconstruction of four possible types of DNA duplexes differing in the positions of the strand interruptions. Analysis of viral DNA extracted from nuclei of cells labeled with (3)H-thymidine for intervals from 3 to 120 min showed that nascent DNA is invariably attached to small fragments and that the fragments become elongated only upon prolonged incubation of cells. The experiments suggest that viral DNA replication begins at numerous initiation sites along each strand and that the elongation beyond the size of the replication unit involves repair or ligation, or both. Since newly made DNA yields more fragments than viral DNA extracted from mature virions, it is suggested that the fragmentation of mature DNA on denaturation with alkali arises from incomplete processing of specific initiation sites. Comparison of viral DNA extracted from nuclei with that extracted from mature cytoplasmic virions in cells labeled for 120 min indicates that packaged DNA is not randomly selected from among the nuclear DNA population but rather represents DNA molecules which in alkaline gradients yield a minimal number of fragments.  相似文献   

9.
PCR and DNA sequencing   总被引:5,自引:0,他引:5  
Specific DNA segments defined by the sequence of two oligonucleotides can be enzymatically amplified up to a millionfold using the polymerase chain reaction (PCR). One of the most significant uses of this technique is for generation of sequencing templates, either from cloned inserts or directly from genomic DNA. To avoid the problem of reassociation of the linear DNA strands in the sequencing reaction, ssDNA templates can be produced directly in the PCR or generated directly from dsDNA by enzymatic treatment, electrophoretic separation or affinity purification. By combining PCR with direct sequencing, both the amplification and the sequencing reaction can be performed in the same vial. Finally, use of fluorescently labeled terminators or sequencing primers will allow the whole procedure to be amenable to complete automation.  相似文献   

10.
Genetic/genomic polymorphism, i.e. variations in DNA sequences are ideally assayed by direct nucleotide sequencing of a gene region or other homologous segment of the genome. An easier and cheaper approach, however, if the variants are analyzed by hybridization technology using restriction fragment length polymorphisms (RFLPs) or by detection of the number of tandem repeats (VNTR) of small DNA segments, the "minisatellites". In this study we describe results of the DNA analysis of repetitive sequences of human 6th chromosome by the application of a chemiluminescent labeled probes. The allele frequency distribution of polymorphic DNA sequences has been determined in unrelated individuals. The isolated genomic DNA was cut with Pst I restriction enzyme, size fractionated on agarose gel and hybridized with a chemiluminescent labeled D6 S132 probe. At this locus the Pst I cleaved DNA fragments are ranging from 1841 to 6098 base pairs (bp). Specific genetic pattern was characterized by more frequent fragments (3313 and 3884 bp), and the rarely occurring ones (clustered between 1841-2595 and 5227-6098 bp). Our study provides a further possibility for characterization of individual genomic patterns.  相似文献   

11.
采用引物延伸预扩增方法 ,可普遍提高微量模板DNA的拷贝数 ,便于进行基因分析时克服标本量少、来源困难的制约。采用常规扩增、检测 2 4 8bp的DYZ1片段体系为观察对象 ,其最小模板量需 1.5ng/2 0 μl体系。以 15个碱基随机寡核苷酸为引物 ,对最小模板量进行预扩增 ,再以其产物 1/10为模板 ,特异扩增DYZ1片段。进行相对定量分析 ,判断原模板DNA拷贝数增加的程度。结果 1.5ng男性DNA经随机扩增后 ,此DYZ1片段拷贝数增加了 10倍以上 ,大大地提高了特异DNA片段扩增的模板量。表明经随机引物延伸预扩增后 ,微量标本DNA片段拷贝数获得普遍提高 ,增加了微量DNA扩增的敏感度  相似文献   

12.
An integrated system with a nano-reactor for cycle-sequencing reaction coupled to on-line purification and capillary gel electrophoresis has been demonstrated. Fifty nanoliters of reagent solution, which includes dye-labeled terminators, polymerase, BSA and template, was aspirated and mixed with the template inside the nano-reactor followed by cycle-sequencing reaction. The reaction products were then purified by a size-exclusion chromatographic column operated at 50°C followed by room temperature on-line injection of the DNA fragments into a capillary for gel electrophoresis. Over 450 bases of DNA can be separated and identified. As little as 25 nl reagent solution can be used for the cycle-sequencing reaction with a slightly shorter read length. Significant savings on reagent cost is achieved because the remaining stock solution can be reused without contamination. The steps of cycle sequencing, on-line purification, injection, DNA separation, capillary regeneration, gel-filling and fluidic manipulation were performed with complete automation. This system can be readily multiplexed for high-throughput DNA sequencing or PCR analysis directly from templates or even biological materials.  相似文献   

13.
14.
Fluorescent 2'-deoxynucleotides containing a protecting group at the 3'-O-position are reversible terminators enabling array-based DNA sequencing by synthesis (SBS) approaches. Herein, we describe the synthesis of a new family of 3'-OH unprotected cleavable fluorescent 2'-deoxynucleotides and their evaluation as reversible terminators for high-throughput DNA SBS strategies. In this first version, all four modified nucleotides bearing a cleavable disulfide Alexa Fluor(R) 594 dye were assayed for their ability to act as a reversible stop for the incorporation of the next labeled base. Their use in SBS leaded to a signal-no signal output after successive addition of each labeled nucleotide during the sequencing process (binary read-out). Solid-phase immobilized synthetic DNA target sequences were used to optimize the method that has been applied to DNA polymerized colonies or clusters obtained by in situ solid-phase amplification of fragments of genomic DNA templates.  相似文献   

15.
Short fragments of DNA (5 S) isolated by denaturation from polyoma replicative intermediates pulse-labeled in vitro were shown to have RNA covalently attached by three criteria: (1) such fragments were slightly denser than bulk viral DNA. (2) They could be labeled directly with α-32P-labeled ribotriphosphates. (3) Alkaline hydrolysis of fragments labeled with α-32P-labeled deoxynucleoside triphosphates showed 32P transfer to 3′ ribonucleoside monophosphates. Except for a preference of transfer from dC, the link showed little sequence specificity. The data are compatible with the notion that all short fragments in replicating viral DNA are initiated by an RNA primer. This RNA is maximally 30 bases long and is rather short-lived.  相似文献   

16.
Termination of vitro DNA synthesis at AAF adducts in the DNA.   总被引:5,自引:2,他引:3       下载免费PDF全文
DNA synthesis catalyzed by E. coli polymerases I or III is inhibited on templates containing N-acetoxy-acetylaminofluorene-reacted adducts. Termination of synthesis occurs just before the site of the adduct. Synthesis on 0X174 templates primed with restriction fragments and treated with AAAF can be visualized on DNA sequencing gels. Comparison of the amounts of the different newly synthesized fragments with those calculated from the probability of termination as determined from the average number of adducts per molecule shows that synthesis terminates, rather than stutters, at each adduct. This method may be useful for detecting the bypass of lesions.  相似文献   

17.
Automated DNA sequencing is an extremely valuable technique which requires very high quality DNA templates to be carried out successfully. While it has been possible to readily produce large numbers of such templates from M13 or other single-stranded vectors for several years, the sequencing of double-stranded DNA templates using the ABI 373 DNA Sequencer has had a considerably lower success rate. We describe how the combination of a new fluorescent, dideoxy sequencing method, called cycle-sequencing, coupled with modifications to template isolation procedures based on Qiagen columns, makes fluorescent sequencing of double-stranded templates a reliable procedure. From a single five milliliter culture enough DNA can be isolated (up to 20 micrograms) to do 4-8 sequencing reactions, each of which yields 400-500 bases of high quality sequence data. These procedures make the routine use of double-stranded DNA templates a viable strategy in automated DNA sequencing projects.  相似文献   

18.
Single molecules of fluorescently labeled nucleotides were detected during the cleavage of individual DNA fragments by a processive exonuclease. In these experiments, multiple (10-100) strands of DNA with tetramethyl rhodamine labeled dUMP (TMR-dUMP) incorporated into the sequence were anchored in flow upstream of the detection region of an ultra sensitive flow cytometer. A dilute solution of Exonuclease I passed over the microspheres. When an exonuclease attached to a strand, processive digestion of that strand began. The liberated, labeled bases flowed through the detection region and were detected at high efficiency at the single-molecule level by laser-induced fluorescence. The digestion of a single strand of DNA by a single exonuclease was discernable in these experiments. This result demonstrates the feasibility of single-molecule DNA sequencing. In addition, these experiments point to a new and practical means of arriving at a consensus sequence by individually reading out identical sequences on multiple fragments.  相似文献   

19.
20.
DNA covalently bound to an uncharged nylon membrane was used for consecutive amplifications of several different genes by PCR. Successful PCR amplifications were obtained for membrane-bound genomic and plasmid DNA. Membrane-bound genomic DNA templates were re-used at least 15 times for PCR with specific amplification of the desired gene each time. PCR amplifications of specific sequences of p53, p16, CYP1A1, CYP2D6, GSTM1 and GSTM3 were performed independently on the same strips of uncharged nylon membrane containing genomic DNA. PCR products were subjected to restriction fragment length polymorphism analysis, single-strand conformational polymorphism analysis and/or dideoxy sequencing to confirm PCR-amplified gene sequences. We found that PCR fragments obtained by amplification from bound genomic DNA as template were identical in sequence to those of PCR products obtained from free genomic DNA in solution. PCR was performed using as little as 5 ng genomic or 4 fg plasmid DNA bound to membrane. These results suggest that DNA covalently bound to membrane can be re-used for sample-specific PCR amplifications, providing a potentially unlimited source of DNA for PCR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号