首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rate of liver glucokinase (GK) translocation from the nucleus to the cytoplasm in response to intraduodenal glucose infusion and the effect of physiological rises of plasma glucose and/or insulin on GK translocation were examined in 6-h-fasted conscious rats. Intraduodenal glucose infusion (28 mg.kg(-1).min(-1) after a priming dose at 500 mg/kg) elevated blood glucose levels (mg/dl) in the artery and portal vein from 90 +/- 3 and 87 +/- 3 to 154 +/- 4 and 185 +/- 4, respectively, at 10 min. At 120 min, the levels had decreased to 133 +/- 6 and 156 +/- 5, respectively. Plasma insulin levels (ng/ml) in the artery and the portal vein rose from 0.7 +/- 0.1 and 1.8 +/- 0.3 to 11.8 +/- 1.5 and 20.2 +/- 2.0 at 10 min, respectively, and 12.4 +/- 3.1 and 18.0 +/- 4.8 at 30 min, respectively. GK was rapidly exported from the nucleus as determined by measuring the ratio of the nuclear to the cytoplasmic immunofluorescence (N/C) of GK (2.9 +/- 0.3 at 0 min to 1.7 +/- 0.2 at 10 min, 1.5 +/- 0.1 at 20 min, 1.3 +/- 0.1 at 30 min, and 1.3 +/- 0.1 at 120 min). When plasma glucose (arterial; mg/dl) and insulin (arterial; ng/ml) levels were clamped for 30 min at 93 +/- 7 and 0.7 +/- 0.1, 81 +/- 5 and 8.9 +/- 1.3, 175 +/- 5 and 0.7 +/- 0.1, or 162 +/- 5 and 9.2 +/- 1.5, the N/C of GK was 3.0 +/- 0.5, 1.8 +/- 0.1, 1.5 +/- 0.1, and 1.2 +/- 0.1, respectively. The N/C of GK regulatory protein (GKRP) did not change in response to the intraduodenal glucose infusion or the rise in plasma glucose and/or insulin levels. The results suggest that GK but not GKRP translocates rapidly in a manner that corresponds with changes in the hepatic glucose balance in response to glucose ingestion in vivo. Additionally, the translocation of GK is induced by the postprandial rise in plasma glucose and insulin.  相似文献   

2.
BackgroundConformational changes coupled to ligand binding constitute the structural and energetics basis underlying cooperativity, allostery and, in general, protein regulation. These conformational rearrangements are associated with heat capacity changes. ITC is a unique technique for studying binding interactions because of the simultaneous determination of the binding affinity and enthalpy, and for providing the best estimates of binding heat capacity changes.Scope of reviewStill controversial issues in ligand binding are the discrimination between the “conformational selection model” and the “induced fit model”, and whether or not conformational changes lead to temperature dependent apparent binding heat capacities. The assessment of conformational changes associated with ligand binding by ITC is discussed. In addition, the “conformational selection” and “induced fit” models are reconciled, and discussed within the context of intrinsically (partially) unstructured proteins.Major conclusionsConformational equilibrium is a major contribution to binding heat capacity changes. A simple model may explain both conformational selection and induced fit scenarios. A temperature-independent binding heat capacity does not necessarily indicate absence of conformational changes upon ligand binding. ITC provides information on the energetics of conformational changes associated with ligand binding (and other possible additional coupled equilibria).General significancePreferential ligand binding to certain protein states leads to an equilibrium shift that is reflected in the coupling between ligand binding and additional equilibria. This represents the structural/energetic basis of the widespread dependence of ligand binding parameters on temperature, as well as pH, ionic strength and the concentration of other chemical species. This article is part of a Special Issue entitled Microcalorimetry in the BioSciences — Principles and Applications, edited by Fadi Bou-Abdallah.  相似文献   

3.
Rainbow trout were fed for 10 weeks with either a carbohydrate-free diet (C-free) or with four experimental diets containing various levels (20 or 40%) and sources of starch (extruded wheat or peas) in order to examine metabolic utilisation of dietary vegetable carbohydrates and its endocrine control. The study was focused on the parameters described as limiting in glucose metabolism in fish. Feeding trials were conducted at 8 and 18 degrees C to establish whether carbohydrate-rich diets can be used in trout farming irrespective of water temperature. At both temperatures, pea diets (especially the highest level) resulted in a feed efficiency as high as the C-free diet. Fish had similar growth rates except when fed the low wheat content diet. Glycaemia values 6 h after feeding were significantly higher in trout fed carbohydrate diets than those given the C-free diet, whereas plasma insulin levels were similar independently of the levels of dietary starch. This study provides the first evidence that glucokinase (GK) activity and mRNA level in trout liver increase in proportion to the content of dietary starch. Nevertheless, these changes were not correlated with plasma insulin levels. Insulin-like growth factor-I (IGF-I) binding and number of receptors in skeletal muscle were consistently higher than those for insulin but no diet-induced differences were found for any of these parameters. Temperature clearly affected the postprandial profile of glucose and insulin, which both showed lower levels 6 h after feeding at 8 degrees C than at 18 degrees C, which was consistent with a lower feed intake. Glucose and insulin levels decreased markedly 24 h after feeding at 18 degrees C, while they were still high at 8 degrees C, an observation concordant with delayed transit rate. These findings indicate satisfactory adaptation of rainbow trout to diets with a relatively high vegetable starch content, especially when provided as extruded peas, and indicate that diets with increased levels of carbohydrates can be used in this species even when it is reared at low temperature.  相似文献   

4.
Type 2 diabetes is a metabolic disease that profoundly affects energy homeostasis. The disease involves failure at several levels and subsystems and is characterized by insulin resistance in target cells and tissues (i.e. by impaired intracellular insulin signaling). We have previously used an iterative experimental-theoretical approach to unravel the early insulin signaling events in primary human adipocytes. That study, like most insulin signaling studies, is based on in vitro experimental examination of cells, and the in vivo relevance of such studies for human beings has not been systematically examined. Herein, we develop a hierarchical model of the adipose tissue, which links intracellular insulin control of glucose transport in human primary adipocytes with whole-body glucose homeostasis. An iterative approach between experiments and minimal modeling allowed us to conclude that it is not possible to scale up the experimentally determined glucose uptake by the isolated adipocytes to match the glucose uptake profile of the adipose tissue in vivo. However, a model that additionally includes insulin effects on blood flow in the adipose tissue and GLUT4 translocation due to cell handling can explain all data, but neither of these additions is sufficient independently. We also extend the minimal model to include hierarchical dynamic links to more detailed models (both to our own models and to those by others), which act as submodules that can be turned on or off. The resulting multilevel hierarchical model can merge detailed results on different subsystems into a coherent understanding of whole-body glucose homeostasis. This hierarchical modeling can potentially create bridges between other experimental model systems and the in vivo human situation and offers a framework for systematic evaluation of the physiological relevance of in vitro obtained molecular/cellular experimental data.  相似文献   

5.
6.
7.
8.
Since there are data to indicate that heavy exercise decreases insulin binding to skeletal muscle at a point when glucose uptake is known to be augmented, we tested the hypothesis that insulin-stimulated glucose uptake and metabolism are dissociated from insulin binding after exercise. Therefore, insulin binding, 2-deoxy-d-glucose (2-DOG) uptake and glucose incorporation into glycogen and glycolysis were compared in soleus and EDL muscles of intensively exercised (2-3 h) mice and non-exercised mice. Basal 2-DOG uptake was increased in the exercised EDL (P less than 0.05) but not in the exercised soleus (P greater than 0.05). However, in both muscles intense exercise increased insulin-stimulated (0.1-16 nM) 2-DOG uptake (P less than 0.05). The rates of glycogenesis were increased in both the exercised muscles (P less than 0.05) as was the rate of glycolysis in the exercise soleus (P less than 0.05). Glycolysis was not altered in the EDL (P greater than 0.05). In the face of the increased 2-DOG uptake and glucose metabolism in the exercised muscles, insulin binding was not altered in the exercised soleus muscle (P greater than 0.05) and was decreased in the exercised EDL (P less than 0.05). These results indicate that after intense exercise there is a dissociation of insulin binding from insulin action on glucose uptake and metabolism in skeletal muscles.  相似文献   

9.
Sec (selenocysteine) is biosynthesized on its tRNA and incorporated into selenium-containing proteins (selenoproteins) as the 21st amino acid residue. Selenoprotein synthesis is dependent on Sec tRNA and the expression of this class of proteins can be modulated by altering Sec tRNA expression. The gene encoding Sec tRNA (Trsp) is a single-copy gene and its targeted removal in liver demonstrated that selenoproteins are essential for proper function wherein their absence leads to necrosis and hepatocellular degeneration. In the present study, we found that the complete loss of selenoproteins in liver was compensated for by an enhanced expression of several phase II response genes and their corresponding gene products. The replacement of selenoprotein synthesis in mice carrying mutant Trsp transgenes, wherein housekeeping, but not stress-related selenoproteins are expressed, led to normal expression of phase II response genes. Thus the present study provides evidence for a functional link between housekeeping selenoproteins and phase II enzymes.  相似文献   

10.
Summary Starfish oocytes were examined before fertilization, immediately after insemination, and during the cortical reaction by means of acid phosphatase and ruthenium red ultrastructural histochemistry. Oocyte cortical granules are composed of a lamellar body and a surrounding matrix which is subdivided into dense and light portions. In unfertilized oocytes cortical granules are not stained by ruthenium red but show a weak acid phosphatase activity in the light portion of the granule matrix. Immediately after the adhesion of the spermatozoon to the oocyte jelly coat, the light matrix portion of cortical granules appears stained by ruthenium red and shows a strong acid phosphatase activity. During the cortical reaction, cortical granules are released into the perivitelline space and the lamellar body, surrounded by the stained matrix, fuses with the fertilization envelope. Our data suggest that membrane permeability changes and enzyme activation occur in the egg when the spermatozoon binds to the oocyte jelly coat.  相似文献   

11.
The purpose of the present experiments was to examine in sheep whether the fetal insulin response to glucose was present by day 110 (d110) of pregnancy and whether the magnitude of the fetal insulin response changed between d110 and d145 (term). We also compared the responses observed in fetuses to those of adult nonpregnant sheep. Basal concentrations of glucose measured in plasma collected from the fetal femoral artery rose progressively between d110 and d145 of gestation, but did not attain the plasma glucose concentrations measured in adult sheep. Peak glucose concentrations in fetuses were achieved 10 min following the bolus injection of glucose (0.8 g/kg estimated fetal body weight) into the fetal femoral vein, and peak values increased with gestational age. Significantly higher peak glucose concentrations were achieved in adult sheep. The concentration of insulin rose rapidly in fetuses at d110, and a similar time course of insulin release in plasma was seen at all gestational ages. The peak plasma insulin concentrations were achieved at 20 min and were significantly greater in older (d140-145) than younger (d125-130) fetuses (p less than 0.05). Peak insulin values in fetuses were much less than in adult sheep. In adult sheep glucose and insulin concentrations remained elevated at 120 min following the injection of glucose, whereas in the fetus the concentration of insulin had returned to preinjection values by 60 min. The insulin/glucose ratio did not change in fetal lambs over the last one third of gestation and was not different from the adult sheep.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
13.
Daniel S  Noda M  Cerione RA  Sharp GW 《Biochemistry》2002,41(30):9663-9671
Mastoparan, a hormone receptor-mimetic peptide isolated from wasp venom, stimulates insulin release from pancreatic beta-cells in a Ca(2+)-independent but GTP-dependent manner. In this report, the role of the Rho family GTP-binding protein Cdc42, in the mastoparan stimulus-secretion pathway, was examined. Overexpression of wild-type Cdc42 in beta HC-9 cells, an insulin-secreting mouse-derived cell line, resulted in a 2-fold increase in mastoparan-stimulated insulin release over vector-transfected beta HC-9 cells. This effect was not seen with secretagogues such as glucose that stimulate secretion via Ca(2+)-dependent pathways. GDP/GTP exchange assay data and studies with pertussis (PTX) toxin suggest that mastoparan may work directly to activate Cdc42 and not via PTX-sensitive heterotrimeric GTP-binding proteins. Using bacterial glutathione S-transferase-Cdc42 fusion proteins and co-immunoprecipitation and transient transfection studies, Cdc42 was shown to be an upstream regulator of the exocytotic protein, syntaxin. These results suggest that the GTP-dependent signal underlying the mastoparan effect acts at a "distal site" in stimulus-secretion coupling on one of the SNARE proteins essential for exocytosis. In vitro binding assays, using purified Cdc42 and syntaxin proteins, show that Cdc42 mediates the GTP signal through an indirect association with syntaxin. The H3 domain at the C-terminus of syntaxin, which participates in the formation of the ternary SNARE complex with the core proteins, SNAP-25 and synaptobrevin, is also required for the association with Cdc42. Thus, these studies indicate that Cdc42 could be a putative GTP-binding protein thought to be involved in the mastoparan-stimulated GTP-dependent pathway of insulin release.  相似文献   

14.
15.
Z Reich  R Ghirlando  A Minsky 《Biochemistry》1991,30(31):7828-7836
Circular dichroism and electron microscopy studies of various in vitro DNA packaging systems indicate that all the factors which induce and modulate the secondary conformation of DNA molecules are capable of eliciting nucleic acids condensation processes into tight, highly ordered tertiary structures as well as altering the extent of order and compactness within the resulting species. Specifically, such factors include the ionic strength, the presence of particular dehydrating agents and polyamines, as well as the pH values. It is proposed that slight alterations of these parameters induce the formation of short non-B-DNA segments that propagate as a perturbation along the B-DNA double helix. The structural fluctuations of the dsDNA molecules that result from the conformational discontinuities formed at the junction sites between the B motif and the conformationally altered segments alter the elastic response of the nucleic acids and facilitate cooperative condensation processes. Moreover, the type and frequency of the structurally modified clusters interspersed within the B conformation and determined by the environmental parameters are shown to provide a means for continuous regulation of the extent and mode of DNA packaging. The ionic strength and hydrophobic environment in the close vicinity of the DNA molecules are controlled and modulated in vivo by DNA-binding proteins such as histones and protamines; similarly, pH values and polyamine concentrations are constantly regulated in living systems. It is suggested, therefore, that the secondary structural polymorphism which characterizes the DNA molecules might display a regulatory role by acting as a functional link between cellular parameters and the extent, mode, and timing of nucleic acid packaging processes.  相似文献   

16.
A functional link between dynamin and the actin cytoskeleton at podosomes   总被引:2,自引:0,他引:2  
Cell transformation by Rous sarcoma virus results in a dramatic change of adhesion structures with the substratum. Adhesion plaques are replaced by dot-like attachment sites called podosomes. Podosomes are also found constitutively in motile nontransformed cells such as leukocytes, macrophages, and osteoclasts. They are represented by columnar arrays of actin which are perpendicular to the substratum and contain tubular invaginations of the plasma membrane. Given the similarity of these tubules to those generated by dynamin around a variety of membrane templates, we investigated whether dynamin is present at podosomes. Immunoreactivities for dynamin 2 and for the dynamin 2-binding protein endophilin 2 (SH3P8) were detected at podosomes of transformed cells and osteoclasts. Furthermore, GFP wild-type dynamin 2aa was targeted to podosomes. As shown by fluorescence recovery after photobleaching, GFP-dynamin 2aa and GFP-actin had a very rapid and similar turnover at podosomes. Expression of the GFP-dynamin 2aa(G273D) abolished podosomes while GFP-dynamin(K44A) was targeted to podosomes but delayed actin turnover. These data demonstrate a functional link between a member of the dynamin family and actin at attachment sites between cells and the substratum.  相似文献   

17.
Intravenous glucose tolerance (IVGTT), basal insulin and insulin response to glucose infusion (GIT), insulin sensitivity, and lipoprotein patterns were determined in non-obese post-coronary subjects, 3-6 months after myocardial infarction. Twelve had decreased and 31 normal IVGTT. The control group comprised 31 subjects with normal IVGTT, who did not display any signs of coronary disease. The post-coronary patients were not taking any drugs except for furosamide, which was shown not to influence insulin response to GIT or glucose tolerance. Decreased IVGTT in the post-coronary patients could be ascribed to decreased insulin response and insulin resistance. These two derangements are considered as hereditary markers in glucose intolerance and type 2 diabetes. Accordingly, our findings suggest that glucose intolerance in subjects with myocardial infarcts has the same background. The post-coronary patients demonstrated elevated triglycerides (TG) and cholesterol in total serum and in very low density lipoproteins (VLDL), the lipoprotein patterns being almost identical in post-coronary patients with or without decreased IVGTT. No relationship was found in the control and post-coronary groups between IVGTT, basal insulin, stimulated insulin (KI, IP), and insulin sensitivity (KG), on the one hand, and total or VLDL TG or any other lipoprotein particle, on the other. Thus, the derangements in glucose, insulin, and serum triglyceride metabolism were independent abnormalities (risk factors) in these non-obese post-coronary patients.  相似文献   

18.
Recent genome-wide association studies (GWASs) have identified candidate genes contributing to cancer risk through low-penetrance mutations. Many of these genes were unexpected and, intriguingly, included well-known players in carcinogenesis at the somatic level. To assess the hypothesis of a germline-somatic link in carcinogenesis, we evaluated the distribution of somatic gene labels within the ordered results of a breast cancer risk GWAS. This analysis suggested frequent influence on risk of genetic variation in loci encoding for “driver kinases” (i.e., kinases encoded by genes that showed higher somatic mutation rates than expected by chance and, therefore, whose deregulation may contribute to cancer development and/or progression). Assessment of these predictions using a population-based case-control study in Poland replicated the association for rs3732568 in EPHB1 (odds ratio (OR) = 0.79; 95% confidence interval (CI): 0.63–0.98; Ptrend = 0.031). Analyses by early age at diagnosis and by estrogen receptor α (ERα) tumor status indicated potential associations for rs6852678 in CDKL2 (OR = 0.32, 95% CI: 0.10–1.00; Precessive = 0.044) and rs10878640 in DYRK2 (OR = 2.39, 95% CI: 1.32–4.30; Pdominant = 0.003), and for rs12765929, rs9836340, rs4707795 in BMPR1A, EPHA3 and EPHA7, respectively (ERα tumor status Pinteraction<0.05). The identification of three novel candidates as EPH receptor genes might indicate a link between perturbed compartmentalization of early neoplastic lesions and breast cancer risk and progression. Together, these data may lay the foundations for replication in additional populations and could potentially increase our knowledge of the underlying molecular mechanisms of breast carcinogenesis.  相似文献   

19.
The effect of cytochalasin B (CB) on insulin binding has been investigated in confluent cultures of chick embryo fibroblasts. Time- and dose-dependent increases in binding of [125I]insulin was observed after incubation of fibroblasts with CB. At 10 μg/ml, CB caused a 2-fold increase in binding, due to an increase in the number of binding sites from 9.3 × 103 to 2.0 × 104 per cell. Removal of CB from the growth medium was accompanied by a decrease in [125I]insulin binding to control values in 24 h. Increase in the binding of insulin in CB-treated CEF was also accompanied by enhancement of insulin to stimulation of [3H]thymidine incorporation into acid-insoluble material. CB treatment also caused disorganization and disappearance of microfilament bundles and changes in cell shape from flat, with a few blebs and folds on the cell surface, to round with numerous blebs and folds. The data from this study suggest that changes in the number of surface insulin-binding sites may be related to the state of organization of cytoskeletal structures in chick embryo fibroblasts.  相似文献   

20.
Ubiquitin conjugation during endoplasmic-reticulum-associated degradation (ERAD) depends on the activity of Ubc7. Here we show that Ubc1 acts as a further ubiquitin-conjugating enzyme in this pathway. Absence of both enzymes results in marked stabilization of an ERAD substrate and induction of the unfolded-protein response (UPR). Furthermore, basic ERAD activity is sufficient to eliminate unfolded proteins under normal conditions. However, when stress is applied, the UPR is required to increase ERAD activity. We thus demonstrate, for the first time, a regulatory loop between ERAD and the UPR, which is essential for normal growth of yeast cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号