首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Biofortification of foods, achieved by increasing the concentrations of minerals such as iron (Fe) and zinc (Zn), is a goal of plant scientists. Understanding genes that influence seed mineral concentration in a model plant such as Arabidopsis could help in the development of nutritionally enhanced crop cultivars. Quantitative trait locus (QTL) mapping for seed concentrations of calcium (Ca), copper (Cu), Fe, potassium (K), magnesium (Mg), manganese (Mn), phosphorus (P), sulfur (S), and Zn was performed using two recombinant inbred line (RIL) populations, Columbia (Col) x Landsberg erecta (Ler) and Cape Verde Islands (Cvi) x Ler, grown on multiple occasions. QTL mapping was also performed using data from silique hulls and the ratio of seed:hull mineral concentration of the Cvi x Ler population. Over 100 QTLs that affected seed mineral concentration were identified. Twenty-nine seed QTLs were found in more than one experiment, and several QTLs were found for both seed and hull mineral traits. A number of candidate genes affecting seed mineral concentration are discussed. These results indicate that A. thaliana is a suitable and convenient model for discovery of genes that affect seed mineral concentration. Some strong QTLs had no obvious candidate genes, offering the possibility of identifying unknown genes that affect mineral uptake and translocation to seeds.  相似文献   

2.
Yellow rust, which is a major disease in areas where cool temperatures prevail, can strongly influence grain yield. To control this disease, breeders have extensively used major specific resistance genes. Unfortunately this kind of resistance is rapidly lost due to pathogen adaptation. More-durable resistance against yellow rust can be achieved using quantitative resistance derived from cultivars with well-established durable resistance. The winter wheat Camp Remy has maintained a high level of resistance for over 20 years. In order to map quantitative trait loci (QTLs) for durable yellow rust resistance, we analysed a set of 98 F8 recombinant inbred (RI) lines derived from the cross Camp Remy×Michigan Amber. We also mapped QTLs for adult resistance to yellow rust using the International Triticae Mapping Initiative RI population (114 lines derived from the cross Opata85×synthetic hexaploid). Two and five QTLs, respectively, were identified from these two populations. This work has highlighted the importance of the centromeric region of chromosome 2B and the telomeric regions of chromosomes 2AL and 7DS in durable yellow rust resistance. The same chromosomal regions are also implicated in resistance to other pathogens. Received: 8 December 2000 / Accepted: 17 April 2001  相似文献   

3.
Arabidopsis thaliana provides a scientifically attractive and simple model for studying root growth and architecture and, subsequently, for discovering new genes involved in the control of these characters in plants. We have used the natural variation available in Arabidopsis accessions and mapped quantitative trait loci (QTLs) for primary root length (PRL), lateral root number (LRN) and density (LRD) and for total length of the lateral root system (LRL) in the Bay-0 × Shahdara population. Total phenotypic variation was very large, and despite the importance of the environmental component we were able to map 13 QTLs and one epistatic interaction between QTLs. Our results highlight the biological relevance and genetic control of lateral root density in this material. We were also able to show that variation in the extent of the lateral root system depends mainly on the growth of the existing lateral roots rather than in a change in LRN. Factors controlling lateral root growth seemed to have no major effect on primary root growth. Moreover, Shahdara QTL alleles always increased the length of the lateral roots, which may be taken as an adaptation to its very dry natural environment in Tadjikistan. A QTL for PRL was confirmed using a type of near-isogenic line called a heterogeneous inbred family (HIF), and this QTL is a candidate for further fine-mapping and cloning.  相似文献   

4.
We have mapped quantitative trait loci (QTL) responsible for natural variation in light and hormone response between the Cape Verde Islands (Cvi) and Landsberg erecta (Ler) accessions of Arabidopsis thaliana using recombinant inbred lines (RILs). Hypocotyl length was measured in four light environments: white, blue, red, and far-red light and in the dark. In addition, white light plus gibberellin (GA) and dark plus the brassinosteroid biosynthesis inhibitor brassinazole (BRZ) were used to detect hormone effects. Twelve QTL were identified that map to loci not previously known to affect light response, as well as loci where candidate genes have been identified from known mutations. Some QTL act in all environments while others show genotype-by-environment interaction. A global threshold was established to identify a significant epistatic interaction between two loci that have few main effects of their own. LIGHT1, a major QTL, has been confirmed in a near isogenic line (NIL) and maps to a new locus with effects in all light environments. The erecta mutation can explain the effect of the HYP2 QTL in the blue, BRZ, and dark environments, but not in far-red. LIGHT2, also confirmed in an NIL, has effects in white and red light and shows interaction with GA. The phenotype and map position of LIGHT2 suggest the photoreceptor PHYB as a candidate gene. Natural variation in light and hormone response thus defines both new genes and known genes that control light response in wild accessions.  相似文献   

5.
Quantitative approaches conducted in a single mapping population are limited by the extent of genetic variation distinguishing the parental genotypes. To overcome this limitation and allow a more complete dissection of the genetic architecture of complex traits, we built an integrated set of 15 new large Arabidopsis thaliana recombinant inbred line (RIL) populations optimized for quantitative trait loci (QTL) mapping, having Columbia as a common parent crossed to distant accessions. Here we present 5 of these populations that were validated by investigating three traits: flowering time, rosette size, and seed production as an estimate of fitness. The large number of RILs in each population (between 319 and 377 lines) and the high density of evenly spaced genetic markers scored ensure high power and precision in QTL mapping even under a minimal phenotyping framework. Moreover, the use of common markers across the different maps allows a direct comparison of the QTL detected within the different RIL sets. In addition, we show that following a selective phenotyping strategy by performing QTL analyses on genotypically chosen subsets of 164 RILs (core populations) does not impair the power of detection of QTL with phenotypic contributions >7%.  相似文献   

6.
Juenger T  Purugganan M  Mackay TF 《Genetics》2000,156(3):1379-1392
A central question in biology is how genes control the expression of quantitative variation. We used statistical methods to estimate genetic variation in eight Arabidopsis thaliana floral characters (fresh flower mass, petal length, petal width, sepal length, sepal width, long stamen length, short stamen length, and pistil length) in a cosmopolitan sample of 15 ecotypes. In addition, we used genome-wide quantitative trait locus (QTL) mapping to evaluate the genetic basis of variation in these same traits in the Landsberg erecta x Columbia recombinant inbred line population. There was significant genetic variation for all traits in both the sample of naturally occurring ecotypes and in the Ler x Col recombinant inbred line population. In addition, broad-sense genetic correlations among the traits were positive and high. A composite interval mapping (CIM) analysis detected 18 significant QTL affecting at least one floral character. Eleven QTL were associated with several floral traits, supporting either pleiotropy or tight linkage as major determinants of flower morphological integration. We propose several candidate genes that may underlie these QTL on the basis of positional information and functional arguments. Genome-wide QTL mapping is a promising tool for the discovery of candidate genes controlling morphological development, the detection of novel phenotypic effects for known genes, and in generating a more complete understanding of the genetic basis of floral development.  相似文献   

7.
Variation in inflorescence development patterns is a central factor in the evolutionary ecology of plants. The genetic architectures of 13 traits associated with inflorescence developmental timing, architecture, rosette morphology, and fitness were investigated in Arabidopsis thaliana, a model plant system. There is substantial naturally occurring genetic variation for inflorescence development traits, with broad sense heritabilities computed from 21 Arabidopsis ecotypes ranging from 0.134 to 0.772. Genetic correlations are significant for most (64/78) pairs of traits, suggesting either pleiotropy or tight linkage among loci. Quantitative trait locus (QTL) mapping indicates 47 and 63 QTL for inflorescence developmental traits in Ler x Col and Cvi x Ler recombinant inbred mapping populations, respectively. Several QTL associated with different developmental traits map to the same Arabidopsis chromosomal regions, in agreement with the strong genetic correlations observed. Epistasis among QTL was observed only in the Cvi x Ler population, and only between regions on chromosomes 1 and 5. Examination of the completed Arabidopsis genome sequence in three QTL regions revealed between 375 and 783 genes per region. Previously identified flowering time, inflorescence architecture, floral meristem identity, and hormone signaling genes represent some of the many candidate genes in these regions.  相似文献   

8.
Segregation of partial resistance to Pseudomonas syringae pv. maculicola (Psm) ES4326 was studied in the recombinant inbred population created from accessions (ecotypes) Columbia (Col‐4), the more susceptible parent, and Landsberg (Ler‐0). Plants were spray inoculated with lux‐transformed bacteria in experiments to measure susceptibility. The amount of disease produced on a range of Col × Ler lines by spray inoculation was highly correlated with that produced by pressure infiltration of bacteria into the apoplast. Quantitative trait locus (QTL) analysis identified four loci that contributed to partial resistance: QRps.JIC‐1.1, QRps.JIC‐2.1, QRps.JIC‐3.1 and QRps.JIC‐5.1 on chromosomes 1, 2, 3 and 5, respectively. QRps.JIC‐3.1, located 8.45 cM from the top of the consensus genetic map of chromosome 3, had a large, approximately additive effect on partial resistance, explaining 50% of the genetic variation in this population. Fine mapping narrowed the region within which this QTL was located to 62 genes. A list of candidate genes included several major classes of resistance gene.  相似文献   

9.
10.
Quantitative trait loci (QTL) analysis of aluminium (Al) tolerance was performed using Ler/Cvi recombinant inbred (RI) lines of Arabidopsis thaliana. Relative root length (RRL) (root length with 4 µm Al/root length with no Al at pH 5.0) on day 5 was used as the Al tolerance index for QTL analysis. Al tolerance judged by RRL was well correlated to tolerance judged by other indexes, including accumulation of callose, reactive oxygen species in the root apex and growth performance on acid soil containing a large amount of exchangeable Al. Using data sets with an hb2 of 0.91, two QTLs were detected at the top of chromosome 1 and bottom of chromosome 3. These QTLs explained 40 and 16% of the phenotypic variation of Al tolerance, respectively, and the positive effect of the Cvi allele. The QTL on chromosome 1 overlapped with a major QTL in another recombinant inbred population, and is possibly related to malate excretion. A complete pair-wise search revealed 11 sets of epistatic interacting loci pairs, which accounted for the transgressive segregation among the RI population. Several epistatic interactions shared the same chromosomal region, indicating the possible involvement of regulatory proteins in Al tolerance in Arabidopsis.  相似文献   

11.
Evolutionary interactions among insect herbivores and plant chemical defenses have generated systems where plant compounds have opposing fitness consequences for host plants, depending on attack by various insect herbivores. This interplay complicates understanding of fitness costs and benefits of plant chemical defenses. We are studying the role of the glucosinolate-myrosinase chemical defense system in protecting Arabidopsis thaliana from specialist and generalist insect herbivory. We used two Arabidopsis recombinant inbred populations in which we had previously mapped QTL controlling variation in the glucosinolate-myrosinase system. In this study we mapped QTL controlling resistance to specialist (Plutella xylostella) and generalist (Trichoplusia ni) herbivores. We identified a number of QTL that are specific to one herbivore or the other, as well as a single QTL that controls resistance to both insects. Comparison of QTL for herbivory, glucosinolates, and myrosinase showed that T. ni herbivory is strongly deterred by higher glucosinolate levels, faster breakdown rates, and specific chemical structures. In contrast, P. xylostella herbivory is uncorrelated with variation in the glucosinolate-myrosinase system. This agrees with evolutionary theory stating that specialist insects may overcome host plant chemical defenses, whereas generalists will be sensitive to these same defenses.  相似文献   

12.
The thousand-grain weight and spikelets per panicle directly contribute to rice yield. Heading date and plant height also greatly influence the yield. Dissection of genetic bases of yield-related traits would provide tools for yield improvement. In this study, quantitative trait loci (QTL) mapping for spikelets per panicle, thousand-grain weight, heading date and plant height was performed using recombinant inbred lines derived from a cross between two diverse cultivars, Nanyangzhan and Chuan7. In total, 20 QTLs were identified for four traits. They were located to 11 chromosomes except on chromosome 4. Seven and five QTLs were detected for thousand-grain weight and spikelets per panicle, respectively. Four QTLs were identified for both heading date and plant height. About half the QTLs were commonly detected in both years, 2006 and 2007. Six QTLs are being reported for the first time. Two QTL clusters were identified in regions flanked by RM22065 and RM5720 on chromosome 7 and by RM502 and RM264 on chromosome 8, respectively. The parent, Nanyangzhan with heavy thousand-grain weight, carried alleles with increased effects on all seven thousand-grain weight QTL, which explained why there was no transgressive segregation for thousand-grain weight in the population. In contrast, Chuan7 with more spikelets per panicle carried positive alleles at all five spikelets per panicle QTL except qspp5. Further work on distinction between pleiotropic QTL and linked QTL is needed in two yield-related QTL clusters.  相似文献   

13.
The SNPWave marker system, based on SNPs between the reference accessions Colombia-0 and Landsberg erecta (Ler), was used to distinguish a set of 92 Arabidopsis accessions from various parts of the world. In addition, we used these markers to genotype three new recombinant inbred line populations for Arabidopsis, having Ler as a common parent that was crossed with the accessions Antwerp-1, Kashmir-2, and Kondara. The benefit of using multiple populations that contain many similar markers and the fact that all markers are linked to the physical map of Arabidopsis facilitates the quantitative comparison of maps. Flowering-time variation was analyzed in the three recombinant inbred line populations. Per population, four to eight quantitative trait loci (QTL) were detected. The comparison of the QTL positions related to the physical map allowed the estimate of 12 different QTL segregating for flowering time for which Ler has an allele different from one, two, or three of the other accessions.  相似文献   

14.
The natural variation in leaf and plant longevity in Arabidopsis thaliana was analysed in a set of 45 ecotypes and 155 recombinant inbred lines derived from a Cape Verde Islands (Cvi) x Landsberg erecta (Ler) cross. Post-bolting longevity was inversely related to time to flowering and rosette leaf number in the set of 45 ecotypes, with Cvi having the longest and Ler the shortest post-bolting longevity. The recombinant inbred line population was tested under low or high soil nutrient levels (LN or HN, respectively). Three quantitative trait loci (QTL), one in chromosome 3 and two in chromosomes 1 and 5, were associated with longevity of the 6th rosette leaf under LN and HN, respectively. Four QTL for post-bolting longevity were found in chromosomes 1, 3, 4, and 5, and two in chromosomes 1 and 5 under LN and HN, respectively. An epistatic interaction affecting post-bolting longevity under LN, but not HN, was detected. Ler and Cvi carry a mix of increasing and decreasing alleles for the QTL affecting longevity of the 6th leaf and post-bolting longevity. Longevity of the 6th rosette leaf was associated with different QTL than post-bolting longevity, and it was affected by different QTL depending on nutrient availability. By contrast, the major QTL affecting post-bolting longevity exerted significant effects irrespective of soil nutrient availability.  相似文献   

15.
Quantitative approaches are now widely used to study the genetic architecture of complex traits. However, most studies have been conducted in single mapping populations, which sample only a fraction of the natural allelic variation available within a gene pool and can identify only a subset of the loci controlling the traits. To enable the progress towards an understanding of the global genetic architecture of a broad range of complex traits, we have developed and characterised six new Arabidopsis thaliana recombinant inbred populations. To evaluate the utility of these populations for integrating analyses from multiple populations, we identified quantitative trait loci (QTL) controlling flowering time in vernalized plants growing in 16 h days. We used the physical positions of markers to align the linkage maps of our populations with those of six existing populations. We identified seven QTL in genomic locations coinciding with those identified in previous studies and in addition a further eight QTL were identified. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. An erratum to this article can be found at  相似文献   

16.
17.
A better understanding of the genetics of seedling characteristics in rice could be helpful in improving rice varieties. Zhenshan 97 and Minghui 63, the parents of Shanyou 63, an elite hybrid developed during the last decade in China, vary greatly with respect to their physiological and morphological traits at the seedling growth stage. In this study, we used a population of 240 recombinant inbred lines derived from a cross between Zhenshan 97 and Minghui 63 to identify quantitative trait loci (QTL) for seedling characteristics. All plant material was grown in hydroponic culture. Data for the following characters were collected at 30 days and 40 days post-sowing: plant height, shoot dry matter weight (SDW), maximum root length, root dry weight (RDW), total dry weight , and root-shoot ratio (the ratio of SDW to RDW). Analysis using composite interval mapping detected 16 QTL for the six traits in 30-day-old seedlings. Of these 16 QTL, Minghui 63 alleles increased trait values at only two of them. The QTL in the vicinity of R3166 on chromosome 5 simultaneously influenced PH, SDW, MRL, RDW, and TDW in the same direction. Twenty QTL were detected for the same traits in the 40-day-old seedlings. However, at this stage Minghui 63 alleles increased trait values at eight QTL. The QTL linked to R3166 also affected PH, SDW, MRL, RDW, and TDW. Only four QTL were common to the two stages. These results clearly indicate that different genes (QTL) control the same traits during different time intervals. Zhenshan 97 alleles had positive effects during the first 30 days of seedling growth, but thereafter the positive effects of Minghui 63 alleles on seedling growth gradually became more pronounced.  相似文献   

18.
Powdery mildew diseases are economically important diseases, caused by obligate biotrophic fungi of the Erysiphales. To understand the complex inheritance of resistance to the powdery mildew disease in the model plant Arabidopsis thaliana, quantitative trait loci analysis was performed using a set of recombinant inbred lines derived from a cross between the resistant accession Kashmir-1 and the susceptible accession Columbia glabrous1. We identified and mapped three independent powdery mildew quantitative disease resistance loci, which act additively to confer disease resistance. The locus with the strongest effect on resistance was mapped to a 500-kbp interval on chromosome III.  相似文献   

19.
Arabidopsis thaliana accession La-er was susceptible, and accession Ms-0 was resistant, to powdery mildew diseases caused by Erysiphe cruciferarum UEA1 and E. cichoracearum UCSC1. The resistance reaction phenotype of A. thaliana Ms-0 to both pathogens was characterized, and the resistance loci were genetically mapped. Growth of E. cruciferarum UEA1 on Ms-0 leaves was arrested after formation of the first appressorium: the underlying host epidermal cell collapsed, and occasionally there was necrosis of one or two host mesophyll cells. Growth of E. cichoracearum UCSC1 on Ms-0 leaves was arrested after emergence of several germ tubes from the conidium, and there was necrosis of host mesophyll cells at the sites of infection. Examination of F2 progeny of a cross La-er x Ms-0 indicated that two independently-segregating dominant loci were required for resistance to E. cruciferarum UEA1. One locus, named RPW6, was genetically mapped to chromosome 5, in a 5.6 cM interval flanked by pCITf16 and PI. The other locus, named RPW7, mapped to chromosome 3 in a 8.5 cM interval flanked by CDC2A and AFC1. Independent effects of RPW6 and RPW7 on E. cruciferarum UEA1 could be detected by quantitative measurements of growth of mycelium and production of conidia. Resistance to E. cichoracearum UCSC1 mapped to a single locus, named RPW8, at a location on chromosome 3 which we could not distinguish from RPW7. Evidently, RPW7 and RPW8 define either a complex resistance locus, or a common resistance gene with dual specificity.  相似文献   

20.
In compatible interactions between plants and viruses that result in systemic infection, symptom development is a major phenotypic trait. However, host determinants governing this trait are mostly unknown, and the mechanisms underlying it are still poorly understood. In a previous study on the Arabidopsis thaliana-Plum pox virus (PPV) pathosystem, we showed a large degree of variation in symptom development among susceptible accessions. In particular, Cvi-1 (Cape Verde islands) accumulates viral particules but remains symptomless, Col-0 (Columbia) sometimes shows weak symptoms compared with Ler (Landsberg erecta), which always shows severe symptoms. Genetic analyses of Col x Ler and Cvi x Ler F2 and recombinant inbred line (RIL) populations suggested that symptom development as well as viral accumulation traits are polygenic and quantitative. Three of the symptom quantitative trait loci (QTL) identified could be confirmed in near-isogenic lines, including PSI1 (PPV symptom induction 1), which was identified on the distal part of chromosome 1 in both RIL populations. With respect to viral accumulation, several factors have been detected and, interestingly, in the Col x Ler population, two out of three viral accumulation QTL colocalized with loci controlling symptom development, although correlation analysis showed weak linearity between symptom severity and virus accumulation. In addition, in the Cvi x Ler RIL population, a digenic recessive determinant controlling PPV infection was identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号