首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Risher WC  Eroglu C 《Matrix biology》2012,31(3):170-177
Thrombospondins (TSPs) are a family of large, oligomeric multidomain glycoproteins that participate in a variety of biological functions as part of the extracellular matrix (ECM). Through their associations with a number of binding partners, TSPs mediate complex cell-cell and cell-matrix interactions in such diverse processes as angiogenesis, inflammation, osteogenesis, cell proliferation, and apoptosis. It was recently shown in the developing central nervous system (CNS) that TSPs promote the formation of new synapses, which are the unique cell-cell adhesions between neurons in the brain. This increase in synaptogenesis is mediated by the interaction between astrocyte-secreted TSPs and their neuronal receptor, calcium channel subunit α2δ-1. The cellular and molecular mechanisms that underlie induction of synaptogenesis via this interaction are yet to be fully elucidated. This review will focus on what is known about TSP and synapse formation during development, possible roles for TSP following brain injury, and what the previously established actions of TSP in other biological tissues may tell us about the mechanisms underlying TSP's functions in CNS synaptogenesis.  相似文献   

2.

The extracellular matrix (ECM) is a fundamental component of biological tissues. The ECM in the central nervous system (CNS) is unique in both composition and function. Functions such as learning, memory, synaptogenesis, and plasticity are regulated by numerous ECM molecules. The neural ECM acts as a non-specific physical barrier that modulates neuronal plasticity and axon regeneration. There are two specialized types of ECM in the CNS, diffuse perisynaptic ECM and condensed ECM, which selectively surround the perikaryon and initial part of dendritic trees in subtypes of neurons, forming perineuronal nets. This review presents the current knowledge about the role of important neuronal ECM molecules in maintaining the basic functions of a neuron, including electrogenesis and the ability to form neural circuits. The review mainly focuses on the role of ECM components that participate in the control of key events such as cell survival, axonal growth, and synaptic remodeling. Particular attention is drawn to the numerous molecular partners of the main ECM components. These regulatory molecules are integrated into the cell membrane or disposed into the matrix itself in solid or soluble form. The interaction of the main matrix components with molecular partners seems essential in molecular mechanisms controlling neuronal functions. Special attention is paid to the chondroitin sulfate proteoglycan 4, type 1 transmembrane protein, neural-glial antigen 2 (NG2/CSPG4), whose cleaved extracellular domain is such a molecular partner that it not only acts directly on neural and vascular cells, but also exerts its influence indirectly by binding to resident ECM molecules.

  相似文献   

3.
Embryonic hearts contain a homogeneous population of mesenchymal cells which migrate through an extensive extracellular matrix (ECM) to become the earliest progenitors of the cardiac valves. Since these cells normally migrate through an ECM containing several adhesion substrates, this study was undertaken to examine and compare three ECM binding mechanisms for mesenchymal cell migration in an in vitro model. Receptor mechanisms for the ECM glycoproteins fibronectin (FN) and laminin (LM) and the cell surface receptor galactosyltransferase (GalTase), which binds an uncharacterized ECM substrate, were compared. Primary cardiac explants from stage 17 chick embryos were cultured on three-dimensional collagen gels. Mesenchymal cell outgrowth was recorded every 24 hr and is reported as a percentage of control. Migration was perturbed using specific inhibitors for each of the three receptor mechanisms. These included the hexapeptide GRGDSP (300-1000 micrograms/ml), which mimics a cell binding domain of FN, the pentapeptide YIGSR (300-1000 micrograms/ml), which mimics a binding domain of LM, and alpha-lactalbumin (1-10 mg/ml), a protein modifier of GalTase activity. The functional role of these adhesion mechanisms was further tested using antibodies to avian integrin (JG22) and avian GalTase. While the FN-related peptide had no significant effect on cell migration it did produce a rounded cellular morphology. The LN-related peptide inhibited mesenchymal migration 70% and alpha-lactalbumin inhibited cell migration 50%. Antibodies against integrin and GalTase inhibited mesenchymal cell migration by 80 and 50%, respectively. The substrate for GalTase was demonstrated to be a single high molecular weight substrate which was not LM or FN. Control peptides, proteins and antibodies demonstrated the specificity of these effects. These data demonstrate that multiple adhesion mechanisms, including cell surface GalTase, are potentially functional during cardiac mesenchymal cell migration. The sensitivity of cell migration to the various inhibitors suggests that occupancy of specific ECM receptors can modulate the activity of other, unrelated, ECM adhesion mechanisms utilized by these cells.  相似文献   

4.
Embryonic hearts contain a homogeneous population of mesenchymal cells which migrate through an extensive extracellular matrix (ECM) to become the earliest progenitors of the cardiac valves. Since these cells normally migrate through an ECM containing several adhesion substrates, this study was undertaken to examine and compare three ECM binding mechanisms for mesenchymal cell migration in an in vitro model. Receptor mechanisms for the ECM glycoproteins fibronectin (FN) and laminin (LM) and the cell surface receptor galactosyltransferase (GalTase), which binds an uncharacterized ECM substrate, were compared. Primary cardiac explants from stage 17 chick embryos were cultured on three-dimensional collagen gels. Mesenchymal cell outgrowth was recorded every 24 hr and is reported as a percentage of control. Migration was perturbed using specific inhibitors for each of the three receptor mechanisms. These included the hexapeptide GRGDSP (300–1000 μg/ml), which mimics a cell binding domain of FN, the pentapeptide YIGSR (300–1000 μg/ml), which mimics a binding domain of LM, and α-lactalbumin (1–10 mg/ml), a protein modifier of GalTase activity. The functional role of these adhesion mechanisms was further tested using antibodies to avian integrin (JG22) and avian GalTase. While the FN-related peptide had no significant effect on cell migration it did produce a rounded cellular morphology. The LN-related peptide inhibited mesenchymal migration 70% and α-lactalbumin inhibited cell migration 50%. Antibodies agasinst integrin and GalTase inhibited mesenchymal cell migration by 80 and 50%, respectively. The substrate for GalTase was demonstrated to be a single high molecular weight substrate which was not LM or FN. Control peptides, proteins and antibodies demonstrated the specificity of these effects. These data demonstrate that multiple adhesion mechanisms, including cell surface GalTase, are potentially functional during cardiac mesenchymal cell migration. The sensitivity of cell migration to the various inhibitors suggests that occupancy of specific ECM receptors can modulate the activity of other, unrelated, ECM adhesion mechanisms utilized by these cells.  相似文献   

5.
Matrix metalloproteinases (MMPs) are a large family of proteases involved in many cell‐matrix and cell‐cell signalling processes through activation, inactivation or release of extracellular matrix (ECM) and non‐ECM molecules, such as growth factors and receptors. Uncontrolled MMP activities underlie the pathophysiology of many disorders. Also matrix metalloproteinase‐3 (MMP‐3) or stromelysin‐1 contributes to several pathologies, such as cancer, asthma and rheumatoid arthritis, and has also been associated with neurodegenerative diseases like Alzheimer's disease, Parkinson's disease and multiple sclerosis. However, based on defined MMP spatiotemporal expression patterns, the identification of novel candidate molecular targets and in vitro and in vivo studies, a beneficial role for MMPs in CNS physiology and recovery is emerging. The main purpose of this review is to shed light on the recently identified roles of MMP‐3 in normal brain development and in plasticity and regeneration after CNS injury and disease. As such, MMP‐3 is correlated with neuronal migration and neurite outgrowth and guidance in the developing CNS and contributes to synaptic plasticity and learning in the adult CNS. Moreover, a strict spatiotemporal MMP‐3 up‐regulation in the injured or diseased CNS might support remyelination and neuroprotection, as well as genesis and migration of stem cells in the damaged brain.  相似文献   

6.
The extracellular matrix (ECM) exists in various biochemical and structural forms that can act either as a barrier to migrating leukocytes, in the case of basement membranes, or provide a physical scaffold supporting or guiding migration (interstitial matrix). This review focuses on basement membranes and our current knowledge of the way that leukocytes transmigrate this protein barrier, with emphasis on T lymphocytes. Recent data suggest that the classical concept of cell-matrix adhesion requires revision with respect to leukocyte-ECM interactions. Whereas specific receptors may be required for leukocyte recognition of ECM molecules or three-dimensional structural domains, the role of adhesion in migration as perceived from the traditional studies of adherent cell-ECM interactions is less clear. Further, the indirect effects of ECM such as the binding and presentation of cytokines or chemotactic factors may more profoundly influence the directed migration of normally non-adherent leukocytes than the migration of adherent cells such as epithelial cells or fibroblasts. Proteases (in particular matrix metalloproteinases) released at sites of inflammation can selectively process ECM, cell surface molecules or soluble factors, which may result in the release of bioactive fragments that can function as chemoattractants for different leukocyte subsets or may modulate the activity/function of resident mesenchymal and immune cells. Current findings suggest that different leukocyte types employ different mechanisms to migrate across or through the ECM; this might be determined by the composition and organization of the ECM itself.  相似文献   

7.
Whereas chemokines are well known for their ability to induce cell migration, only recently it became evident that chemokines also control a variety of other cell functions and are versatile messengers in the interaction between a diversity of cell types. In the central nervous system (CNS), chemokines are generally found under both physiological and pathological conditions. Whereas many reports describe chemokine expression in astrocytes and microglia and their role in the migration of leukocytes into the CNS, only few studies describe chemokine expression in neurons. Nevertheless, the expression of neuronal chemokines and the corresponding chemokine receptors in CNS cells under physiological and pathological conditions indicates that neuronal chemokines contribute to CNS cell interaction. In this study, we review recent studies describing neuronal chemokine expression and discuss potential roles of neuronal chemokines in neuron–astrocyte, neuron–microglia, and neuron–neuron interaction.  相似文献   

8.
Angiogenesis, the formation of new blood vessels sprouting from existing ones, occurs in several situations like wound healing, tissue remodeling, and near growing tumors. Under hypoxic conditions, tumor cells secrete growth factors, including VEGF. VEGF activates endothelial cells (ECs) in nearby vessels, leading to the migration of ECs out of the vessel and the formation of growing sprouts. A key process in angiogenesis is cellular self-organization, and previous modeling studies have identified mechanisms for producing networks and sprouts. Most theoretical studies of cellular self-organization during angiogenesis have ignored the interactions of ECs with the extra-cellular matrix (ECM), the jelly or hard materials that cells live in. Apart from providing structural support to cells, the ECM may play a key role in the coordination of cellular motility during angiogenesis. For example, by modifying the ECM, ECs can affect the motility of other ECs, long after they have left. Here, we present an explorative study of the cellular self-organization resulting from such ECM-coordinated cell migration. We show that a set of biologically-motivated, cell behavioral rules, including chemotaxis, haptotaxis, haptokinesis, and ECM-guided proliferation suffice for forming sprouts and branching vascular trees.  相似文献   

9.
I Thesleff 《Ontogenez》1989,20(4):341-349
A series of reciprocal interactions between epithelial and mesenchymal tissues control the morphogenesis and cell differentiation in the developing tooth. The molecular mechanisms operating in these interactions are, however, unknown at present. Structural components of the extracellular matrix (ECM) affect cellular behavior in the embryo and appear to be involved also in these regulatory processes. The ECM molecules exert their effects on cells through binding to specific matrix receptors on the cell surface. This review article summarizes our findings on the distribution patterns during tooth development of the ECM glycoproteins, fibronectin and tenascin, and of the cell surface proteoglycan, syndecan, which functions as a receptor for interstitial matrix. Based on the observed changes in these distribution patterns and on experimental evidence, roles for these molecules in epithelial-mesenchymal interactions during tooth development are suggested. Fibronectin and tenascin are enriched in the dental basement membrane at the time of odontoblast differentiation. These matrix glycoproteins may be involved in the cell-matrix interaction which controls differentiation of the dental mesenchymal cells into odontoblasts. Tenascin and syndecan are accumulated in the dental mesenchyme during bud stage of development. We have shown in tissue recombination experiments that the presumptive dental epithelium induces the expression of tenascin and syndecan in mesenchyme. We suggest that these molecules are involved in cell-matrix interactions, which regulate mesenchymal cell condensation during the earliest stages of tooth morphogenesis.  相似文献   

10.
Establishment of axon and dendrite polarity, migration to a desired location in the developing brain, and establishment of proper synaptic connections are essential processes during neuronal development. The cellular and molecular mechanisms that govern these processes are under intensive investigation. The function of the centrosome in neuronal development has been examined and discussed in few recent studies that underscore the fundamental role of the centrosome in brain development. Clusters of emerging studies have shown that centrosome positioning tightly regulates neuronal development, leading to the segregation of cell factors, directed neurite differentiation, neuronal migration, and synaptic integration. Furthermore, cilia, that arise from the axoneme, a modified centriole, are emerging as new regulatory modules in neuronal development in conjunction with the centrosome. In this review, we focus on summarizing and discussing recent studies on centrosome positioning during neuronal development and also highlight recent findings on the role of cilia in brain development. We further discuss shared molecular signaling pathways that might regulate both centrosome and cilia associated signaling in neuronal development. Furthermore, molecular determinants such as DISC1 and LKB1 have been recently demonstrated to be crucial regulators of various aspects of neuronal development. Strikingly, these determinants might exert their function, at least in part, via the regulation of centrosome and cilia associated signaling and serve as a link between these two signaling centers. We thus include an overview of these molecular determinants.  相似文献   

11.
During development the extracellular matrix (ECM) of the central nervous system (CNS) facilitates proliferation, migration, and synaptogenesis. In the mature nervous system due to changes in the ECM it provides structural stability and impedes proliferation, migration, and synaptogensis. The perineuronal net (PN) is a specialized ECM structure found primarily surrounding inhibitory interneurons where it forms a mesh-like structure around points of synaptic contact. The PN organizes the extracellular space by binding multiple components of the ECM and bringing them into close proximity to the cell membrane, forming dense aggregates surrounding synapses. The PN is expressed late in postnatal development when the nervous system is in the final stages of maturation and the critical periods are closing. Once fully expressed the PN envelopes synapses and leads to decreased plasticity and increases synaptic stability in the CNS. Disruptions in the PN have been studied in a number of disease states including epilepsy. Epilepsy is one of the most common neurologic disorders characterized by excessive neuronal activity which results in recurrent spontaneous seizures. A shift in the delicate balance between excitation and inhibition is believed to be one of the underlying mechanisms in the development of epilepsy. During epileptogenesis, the brain undergoes numerous changes including synaptic rearrangement and axonal sprouting, which require structural plasticity. Because of the PNs location around inhibitory cells and its role in limiting plasticity, the PN is an important candidate for altering the progression of epilepsy. In this review, an overview of the ECM and PN in the CNS will be presented with special emphasis on potential roles in epileptogenesis.  相似文献   

12.
Bi-directional signal transduction by integrin receptors   总被引:7,自引:0,他引:7  
The integrin family of cell surface glycoproteins functions primarily as receptors for extracellular matrix ligands. There are now many well characterized integrin-ligand interactions which are known to influence many aspects of cell behaviour including cell morphology, cell adhesion, cell migration as well as cellular proliferation and differentiation. However, in fulfilling these functions, integrins are not simple adhesion receptors that physically mediate connections across the plasma membrane. Rather, integrin function itself is highly regulated, largely through the formation of specific associations with both structural and regulatory components within cells. It is these intracellular interactions which allow integrin function to effect many biochemical signalling pathways and therefore to impinge upon complex cellular activities. Recently, much research has focused on elucidating the molecular mechanisms which control integrin function and the molecular processes which transduce integrin-mediated signalling events. In this review, we discuss progress in the field of integrin signal transduction including, where applicable, potential therapeutic applications arising from the research.  相似文献   

13.
ABSTRACT

Extracellular matrix (ECM) provides cells scaffolding for cell migration and microenvironment for various cellular functions. Collagens are major ECM components in tissue and discoidin domain receptors (DDRs) are receptor tyrosine kinases (RTK) that recognise fibrillar collagens. Unlike other RTK, their ligands are solid ECM the that are abundantly present in the pericellular environment in various tissue, and thus its activation and regulations are unique amongst RTK family. It is emerging that DDRs may be the sensors that monitor and detects changes in ECM microenvironment and determines the cellular fates upon tissue injuries. In this mini-review, recent findings on the role of DDRs as microenvironment sensor and their roles in cell migration and invasion are discussed.  相似文献   

14.
An astonishing number of extracellular matrix glycoproteins are expressed in dynamic patterns in the developing and adult nervous system. Neural stem cells, neurons, and glia express receptors that mediate interactions with specific extracellular matrix molecules. Functional studies in vitro and genetic studies in mice have provided evidence that the extracellular matrix affects virtually all aspects of nervous system development and function. Here we will summarize recent findings that have shed light on the specific functions of defined extracellular matrix molecules on such diverse processes as neural stem cell differentiation, neuronal migration, the formation of axonal tracts, and the maturation and function of synapses in the peripheral and central nervous system.  相似文献   

15.
Focal adhesion kinase: protein interactions and cellular functions   总被引:12,自引:0,他引:12  
Integrin-mediated cell adhesion to extracellular matrix (ECM) plays important roles in a variety of biological processes. Recent studies suggested that integrins mediate signal transduction across the plasma membrane via activating several intracellular signaling pathways. Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that has been shown to be a major mediator of integrin signal transduction pathways. Upon activation by integrins, FAK undergoes autophosphorylation as well as associations with several other intracellular signaling molecules. These interactions in the signaling pathways have been shown to regulation a variety of cellular functions such as cell spreading, migration, cell proliferation, apoptosis and cell survival. Recent progress in the understanding of FAK interactions with other proteins in the regulation of these cellular functions will be discussed in this review.  相似文献   

16.
Cell-extracellular matrix (ECM) adhesion is mediated by transmembrane cell adhesion receptors (e.g., integrins) and receptor proximal cytoplasmic proteins. Over the past several years, studies using biochemical, structural, cell biological and genetic approaches have provided important evidence suggesting crucial roles of integrin-linked kinase (ILK), PINCH and CH-ILKBP/actopaxin/affixin/parvin (abbreviated as parvin herein) in ECM control of cell behavior. One general theme emerging from these studies is that the formation of ternary protein complexes consisting of ILK, PINCH and parvin is pivotal to the functions of PINCH, ILK and parvin proteins. In addition, recent studies have begun to uncover the molecular mechanisms underlying the assembly, functions and regulation of the PINCH-ILK-parvin (PIP) complexes. The PIP complexes provide crucial physical linkages between integrins and the actin cytoskeleton and transduce diverse signals from ECM to intracellular effectors. Among the challenges of future studies are to define the functions of different PIP complexes in various cellular processes, identify additional partners of the PIP complexes that regulate and/or mediate the functions of the PIP complexes, and determine the roles of the PIP complexes in the pathogenesis of human diseases involving abnormal cell-ECM adhesion and signaling.  相似文献   

17.
The mammalian target of rapamycin (mTOR) signaling pathway plays an important role in multiple cellular functions, such as cell metabolism, proliferation and survival. Many previous studies have shown that mTOR regulates both neuroprotective and neuroregenerative functions in trauma and various diseases in the central nervous system (CNS). Recently, we reported that inhibition of mTOR using rapamycin reduces neural tissue damage and locomotor impairment after spinal cord injury (SCI) in mice. Our results demonstrated that the administration of rapamycin at four hours after injury significantly increases the activity of autophagy and reduces neuronal loss and cell death in the injured spinal cord. Furthermore, rapamycin-treated mice show significantly better locomotor function in the hindlimbs following SCI than vehicle-treated mice. These findings indicate that the inhibition of mTOR signaling using rapamycin during the acute phase of SCI produces neuroprotective effects and reduces secondary damage at lesion sites. However, the role of mTOR signaling in injured spinal cords has not yet been fully elucidated. Various functions are regulated by mTOR signaling in the CNS, and multiple pathophysiological processes occur following SCI. Here, we discuss several unresolved issues and review the evidence from related articles regarding the role and mechanisms of the mTOR signaling pathway in neuroprotection and neuroregeneration after SCI.  相似文献   

18.
The mammalian target of rapamycin (mTOR) signaling pathway plays an important role in multiple cellular functions, such as cell metabolism, proliferation and survival. Many previous studies have shown that mTOR regulates both neuroprotective and neuroregenerative functions in trauma and various diseases in the central nervous system (CNS). Recently, we reported that inhibition of mTOR using rapamycin reduces neural tissue damage and locomotor impairment after spinal cord injury (SCI) in mice. Our results demonstrated that the administration of rapamycin at four hours after injury significantly increases the activity of autophagy and reduces neuronal loss and cell death in the injured spinal cord. Furthermore, rapamycin-treated mice show significantly better locomotor function in the hindlimbs following SCI than vehicle-treated mice. These findings indicate that the inhibition of mTOR signaling using rapamycin during the acute phase of SCI produces neuroprotective effects and reduces secondary damage at lesion sites. However, the role of mTOR signaling in injured spinal cords has not yet been fully elucidated. Various functions are regulated by mTOR signaling in the CNS, and multiple pathophysiological processes occur following SCI. Here, we discuss several unresolved issues and review the evidence from related articles regarding the role and mechanisms of the mTOR signaling pathway in neuroprotection and neuroregeneration after SCI.  相似文献   

19.
Neurosphere cultures derived from fetal brain regions can proliferate in response to exogenous growth factors such as basic fibroblast growth factor (bFGF) and give rise to undifferentiated precursor cells that form a floating neurosphere. In this study, neurospheres generated from the ganglionic eminence region of embryonic day 15 (E15) rat embryos were treated in the presence or absence of ethanol. We found that such neurospheres respond to environmental toxins such as alcohol and still retain the multi-potential capability of differentiation into neuronal and glial cell types. Ethanol at high concentration (50 mM) affected proliferation, gliogenesis and neurogenesis, although the most profound effect was observed on glial phenotype. Our findings suggest that extrinsic agents, such as alcohol can alter intrinsic cellular mechanisms of stem cell fate choices contributing to altered neurogenesis and gliogenesis during central nervous system (CNS) maturation, which might in part be responsible for defective astroglial and neuronal functions in fetal alcohol syndrome (FAS).  相似文献   

20.
The extracellular matrix (ECM) in the liver as well as in many organs comprises a peripheral network linking numerous macromolecules typically classified into collagens, microfibrillar proteins, proteoglycans, chemokines, growth factors and glycoproteins. In addition to its role as an essential structural and physiological component, it plays a vital role in driving key cellular events such as cell adhesion, migration, proliferation, differentiation and survival. Any structural inherited or acquired defect and/or metabolic or pathologic alteration in the hepatic ECM may cause cellular and organ responses leading to the development or progression of liver disease. Therefore, the ECM molecules are key players in tissue engraftment and in the pathophysiology of liver disease. In this review we provide a snapshot on current efforts for understanding its role in physiological and non-physiological states, by describing how tissue engineering platforms can enhance in vitro and in vivo models of liver disease, by providing examples where bioengineered ECM can serve as systems biology approaches to study the ECM, and then by evaluating pathological protein regulatory networks in the liver using systems biology tools. These approaches hold great promise for future research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号