首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several animal species have recently been shown to have hybrid origins, but no avian examples have been documented with molecular evidence. We investigate whether the Audubon’s warbler (Dendroica auduboni), one of four visually distinct species in the yellow‐rumped warbler complex, has originated through hybridization between two other species in this group, the myrtle warbler (D. coronata) and black‐fronted warbler (D. nigrifrons). Analysis of nuclear amplified fragment length polymorphism (AFLP) and sequence markers shows that Audubon’s warblers are genetically intermediate and carry a mixture of alleles otherwise found only in one or the other of their putative parental species. Audubon’s warblers also carry two deeply divergent mitochondrial DNA lineages, each shared with only one putative parental form. Broad clines between Audubon’s and black‐fronted warblers in AFLP markers call into question the validity of these two forms as full species; nevertheless, our results suggest that the Audubon’s warbler probably originated through hybridization between two long‐diverged species. It is likely that more cases of avian species of hybrid origin will be revealed by surveys of variation in nuclear DNA and other traits.  相似文献   

2.
The extent of chromosome structural differences such as permanent translocations and paracentric inversions has been studied in the hybrid complex of Phlomis composita and its putative parental taxa P. lychnitis and P. crinita . They are detected as meiotic abnormalities during microsporogenesis. In total, 117 plants from 19 populations in Andalusia (southern Spain) and Levante (eastern Spain) were studied for ploidy level, chromosome clumping, multivalent or univalent formation, late bivalent disjunction with bridges, chromatin bridges and fragments, irregular polysporads and variable pollen size. All individuals had the diploid chromosome number 2 n  = 20, with no significant difference in the frequencies of the above meiotic abnormalities either at taxon or population levels. However, very different frequencies were observed on the regional scale between populations in Andalusia and Levante. The results are discussed within the theoretical framework of homoploid hybrid or recombinational speciation.  © 2003 The Linnean Society of London, Botanical Journal of the Linnean Society , 2003, 143 , 79−85.  相似文献   

3.
Among animals, evidence for homoploid hybrid speciation (HHS, i.e. the creation of a hybrid lineage without a change in chromosome number) was limited until recently to the virgin chub, Gila seminuda, and some controversial data in support of hybrid status for the red wolf, Canis rufus. This scarcity of evidence, together with pessimistic attitudes among zoologists about the evolutionary importance of hybridisation, prompted the view that HHS is extremely rare among animals, especially as compared with plants. However, in recent years, the literature on animal HHS has expanded to include several new putative examples in butterflies, ants, flies and fishes. We argue that this evidence suggests that HHS is far more common than previously thought and use it to provide insights into some of the genetic and ecological aspects associated with this type of speciation among animals.  相似文献   

4.
Homoploid hybrid speciation is thought to require unusual circumstances to yield reproductive isolation from the parental species, and few examples are known from nature. Here, we present genetic evidence for this mode of speciation in birds. Using Bayesian assignment analyses of 751 individuals genotyped for 14 unlinked, nuclear microsatellite loci, we show that the phenotypically intermediate Italian sparrow (Passer italiae) does not form a cluster of its own, but instead exhibits clear admixture (over its entire breeding range) between its putative parental species, the house sparrow (P. domesticus) and the Spanish sparrow (P. hispaniolensis). Further, the Italian sparrow possesses mitochondrial (mt) DNA haplotypes identical to both putative parental species (although mostly of house sparrow type), indicating a recent hybrid origin. Today, the Italian sparrow has a largely allopatric distribution on the Italian peninsula and some Mediterranean islands separated from its suggested parental species by the Alps and the Mediterranean Sea, but co‐occurs with the Spanish sparrow on the Gargano peninsula in southeast Italy. No evidence of interbreeding was found in this sympatric population. However, the Italian sparrow hybridizes with the house sparrow in a sparsely populated contact zone in the Alps. Yet, the contact zone is characterized by steep clines in species‐specific male plumage traits, suggesting that partial reproductive isolation may also have developed between these two taxa. Thus, geographic and reproductive barriers restrict gene flow into the nascent hybrid species. We propose that an origin of hybrid species where the hybrid lineage gets geographically isolated from its parental species, as seems to have happened in this system, might be more common in nature than previously assumed.  相似文献   

5.
6.
Hybrid speciation is constrained by the homogenizing effects of gene flow from the parental species. In the absence of post‐mating isolation due to structural changes in the genome, or temporal or spatial premating isolation, another form of reproductive isolation would be needed for homoploid hybrid speciation to occur. Here, we investigate the potential of behavioural mate choice to generate assortative mating among hybrids and parental species. We made three‐first‐generation hybrid crosses between different species of African cichlid fish. In three‐way mate‐choice experiments, we allowed hybrid and nonhybrid females to mate with either hybrid or nonhybrid males. We found that hybrids generally mated nonrandomly and that hybridization can lead to the expression of new combinations of traits and preferences that behaviourally isolate hybrids from both parental species. Specifically, we find that the phenotypic distinctiveness of hybrids predicts the symmetry and extent of their reproductive isolation. Our data suggest that behavioural mate choice among hybrids may facilitate the establishment of isolated hybrid populations, even in proximity to one or both parental species.  相似文献   

7.
Molecular approaches have greatly increased the number of confirmed homoploid hybrids, which suggests that the frequency of this phenomenon was underestimated in the past because it was much more difficult to detect than allopolyploidy. Centaurea is a suitable model group for studying homoploid speciation, as hybridization events have been commonly reported for this genus. Based on this, here we study Centaurea × forsythiana, a naturally occurring homoploid hybrid between two Sardinian endemics, C. horrida and C. filiformis, using a molecular approach involving nuclear and plastid markers, to understand the underlying population dynamics between homoploid hybrids and their parents. Our results confirm that C. × forsythiana is a hybrid between the above‐mentioned species and define the roles of the parents. Plastid markers point towards C. horrida as the maternal progenitor, and nuclear markers reveal that the other parental species, C. filiformis, is itself an old, stabilized homoploid hybrid related to the C. paniculata complex from the Italian mainland. Homoploid hybrid speciation is discussed and C. × forsythiana and C. filiformis are compared with other similar examples. The study confirms the importance of introgression between parental species mediated by hybrids and its potential implications in conservation. Furthermore, it shows how hybridization studies become even more complex when the parents are themselves of probable hybrid origin. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 175 , 453–467.  相似文献   

8.
The relative importance of the Pleistocene glacial cycles in driving avian speciation remains controversial, partly because species limits in many groups remain poorly understood, and because current taxonomic designations are often based on phenotypic characteristics of uncertain phylogenetic significance. We use mtDNA sequence data to examine patterns of genetic variation, sequence divergence and phylogenetic relationships between phenotypically distinct groups of the yellow-rumped warbler complex. Currently classified as a single species, the complex is composed of two North American migratory forms (myrtle warbler Dendroica coronata coronata and Audubon's warbler Dendroica coronata auduboni), and two largely sedentary forms: Dendroica coronata nigrifrons of Mexico, and Dendroica coronata goldmani of Guatemala. The latter are typically considered to be races of the Audubon's warbler based on plumage characteristics. However, mtDNA sequence data reveal that sedentary Mesoamerican forms are reciprocally monophyletic to each other and to migratory forms, from which they show a long history of isolation. In contrast, migratory myrtle and Audubon's warblers form a single cluster due to high levels of shared ancestral polymorphism as evidenced by widespread sharing of mtDNA haplotypes despite marked phenotypic differentiation. Sedentary and migratory forms diverged in the early Pleistocene, whereas phenotypic differentiation between the two migratory forms has occurred in the Holocene and is likely the result of geographical isolation and subsequent range expansion since the last glaciation. Our results underscore the importance of Quaternary climatic events in driving songbird speciation and indicate that plumage traits can evolve remarkably fast, thus rendering them potentially misleading for inferring systematic relationships.  相似文献   

9.
Background and AimsHybridization is known to drive plant speciation through the establishment of homoploid or allopolyploid hybrid species. Here we investigate the origin of Pulmonaria helvetica, a narrow endemic species described across a restricted area of Switzerland that was entirely covered by ice during the last glacial maximum. This species presents an original number of chromosomes (2n = 24) and morphological traits suggestive of a hybrid origin.MethodsWe sequenced a plastid locus and 1077 double-digest restriction-site-associated DNA (ddRAD) loci in 67 individuals from across the distribution range of P. helvetica and candidate progenitor species growing in the same area. Assignment of genotypes to main genetic clusters within and among taxa using STRUCTURE tested whether P. helvetica represents a genetically differentiated lineage and addressed the hypothesis of its hybrid origin. Comparative ecological modelling further addressed possible niche differentiation among taxa.Key Results Pulmonaria helvetica was highlighted as a genetically homogeneous species distinct from co-occurring taxa. Consistent with a scenario of hybrid speciation, it presented clear evidence of balanced admixture between Pulmonaria officinalis (2n = 16) and Pulmonaria mollis s.l. (2n = 18, 22), which was also highlighted as a maternal progenitor based on plastid sequences. Limited genetic structure within the maternal progenitor is consistent with an origin of P. helvetica through either homoploid hybridization with considerable karyotype changes or via complex scenarios of allopolyploidy involving a dysploid taxon of P. mollis s.l. Comparative niche modelling indicated non-significant ecological differences between P. helvetica and its progenitors, supporting intrinsic factors resulting from hybridization as main drivers of speciation.ConclusionsHybridization appears as a major process having promoted the postglacial origin of the narrow endemic P. helvetica, suggesting hybrid speciation as an effective process that rapidly produces new species under climate changes.  相似文献   

10.
Premise of the study: Hybridization is an important evolutionary force in the history of angiosperms; however, there are few examples of stabilized species derived through homoploid hybrid speciation. Homoploid hybrid species are generally detected via the presence of genetic additivity of parental markers, novel ecological and spatial distinctions, and novel morphological traits, all of which may aid in the successful establishment of hybrid species from parental types. Speciation and diversification within the genus Castilleja (Orobanchaceae) has been attributed to high levels of hybridization and polyploidy, though currently there are no examples of homoploid hybrid speciation within the genus. We employed multiple lines of evidence to examine a putative hybrid origin in C. christii, a rare endemic, known only from 80 hectares at the summit of Mt. Harrison (Cassia Co., Idaho). • Methods: We used granule-bound starch synthase II (waxy) sequences and 26 morphological characters to address hybridization between C. christii and widespread congeners C. miniata and/or C. linariifolia in an area of sympatry. Chromosomes of C. christii were also counted for the first time. • Key results: All 230 direct-sequenced C. christii individuals had the additive genomes of both C. miniata and C. linariifolia. Castilleja christii shares traits with both parents but also has floral characters that are unique and transgressive. Cytological counts indicated that all three taxa are diploid. • Conclusions: We conclude that C. christii is a stabilized homoploid hybrid derivative of C. linariifolia and C. miniata and is likely following an independent evolutionary trajectory from its progenitors.  相似文献   

11.
Although homoploid hybrid speciation is increasingly recognized as an important phenomenon in plant evolution, its role in adaptive radiations is poorly documented. We studied a clade of seven extant species of Scaevola that are endemic to the Hawaiian Islands and show substantial ecological and morphological diversity. We estimated the genealogies for alleles isolated from multiple accessions of each species at four nuclear loci: the ITS region, and the introns of three nuclear genes, LEAFY (LFY), NITRATE REDUCTASE (NIA), and GLYCERALDEHYDE 3-PHOSPHATE DEHYDROGENASE (G3PDH). For five of the seven species, there was complete concordance among the genealogies estimated from the four loci and, when all four regions were combined, the relationships among these five species were fully resolved. Inclusion of alleles from the remaining two species, S. procera and S. kilaueae, resulted in incongruence among loci, which appears to reflect a history of hybridization. Based on the distribution of alleles, we infer that S. procera is the result of a homoploid hybrid speciation event between S. gaudichaudii and S. mollis and that S. kilaueae is probably the result of hybrid speciation between S. coriacea and S. chamissoniana. In each case the inferred hybridization is consistent with morphological, ecological, and geographic information. We conclude that homoploid hybrid speciation may be more common than is perceived and may play a role in generating novel combinations of adaptive traits that arise during island radiations.  相似文献   

12.
Zeng YF  Liao WJ  Petit RJ  Zhang DY 《Molecular ecology》2011,20(23):4995-5011
Studying geographic variation in the rate of hybridization between closely related species could provide a useful window on the evolution of reproductive isolation. Reinforcement theory predicts greater prezygotic isolation in areas of prolonged contact between recently diverged species than in areas of recent contact, which implies that old contact zones would be dominated by parental phenotypes with few hybrids (bimodal hybrid zones), whereas recent contact zones would be characterized by hybrid swarms (unimodal hybrid zones). Here, we investigate how the hybrid zones of two closely related Chinese oaks, Quercus mongolica and Q. liaotungensis, are structured geographically using both nuclear and chloroplast markers. We found that populations of Q. liaotungensis located around the Changbai Mountains in Northeast China, an inferred glacial refugium, were introgressed by genes from Q. mongolica, suggesting historical contact between the two species in this region. However, these introgressed populations form sharp bimodal hybrid zones with Q. mongolica. In contrast, populations of Q. liaotungensis located in North China, which show no sign of ancient introgression with Q. mongolica, form unimodal hybrid zones with Q. mongolica. These results are consistent with the hypothesis that selection against hybrids has had sufficient time to reinforce the reproductive barriers between Q. liaotungensis and Q. mongolica in Northeast China but not in North China.  相似文献   

13.
Hybrids between species provide information about the evolutionary processes involved in divergence. In addition to creating hybrids in the laboratory, biologists can take advantage of natural hybrid zones to understand the factors that shape gene flow between divergent lineages. In the early stages of speciation, most regions of the genome continue to flow freely between populations. Alternatively, the subset of the genome that confers reproductive barriers between nascent species is expected to reject introgression. Now enabled by advances in genomics, this perspective is motivating detailed comparisons of gene flow across genomic regions in hybrid zones. Here, I review methods for measuring and interpreting introgression at multiple loci in hybrid zones, focusing on the problem of identifying loci that contribute to reproductive isolation. Emerging patterns from multi-locus studies of hybrid zones are highlighted, including remarkable variance in introgression across the genome. Although existing methods have been useful, there is scope for development of new analytical approaches that better connect differential patterns of gene flow in hybrid zones with current knowledge of speciation mechanisms. I outline future prospects for differential introgression studies on a genomic scale.  相似文献   

14.
Heliconius butterflies have become a model for the study of speciation with gene flow. For adaptive introgression to take place, there must be incomplete barriers to gene exchange that allow interspecific hybridization and multiple generations of backcrossing. The recent publication of estimates of individual components of reproductive isolation between several species of butterflies in the Heliconius melpomeneH. cydno clade allowed us to calculate total reproductive isolation estimates for these species. According to these estimates, the butterflies are not as promiscuous as has been implied. Differences between species are maintained by intrinsic mechanisms, while reproductive isolation of geographical races within species is mainly due to allopatry. We discuss the implications of this strong isolation for basic aspects of the hybrid speciation with introgression hypothesis.  相似文献   

15.
Ren GP  Abbott RJ  Zhou YF  Zhang LR  Peng YL  Liu JQ 《Heredity》2012,108(5):552-562
Although homoploid hybrid speciation in plants is probably more common than previously realized, there are few well-documented cases of homoploid hybrid origin in conifers. We examined genetic divergence between two currently widespread pines in Northeast China, Pinus sylvestris var. mongolica and Pinus densiflora, and also whether two narrowly distributed pines in the same region, Pinus funebris and Pinus takahasii, might have originated from the two widespread species by homoploid hybrid speciation. Our results, based on population genetic analysis of chloroplast (cp), mitochondrial (mt) DNA, and nuclear gene sequence variation, showed that the two widespread species were divergent for both cp- and mtDNA variation, and also for haplotype variation at two of eight nuclear gene loci surveyed. Our analysis further indicated that P. sylvestris var. mongolica and P. densiflora remained allopatric during the most severe Quaternary glacial period that occurred in Northeast China, but subsequently exhibited rapid range expansions. P. funebris and P. takahasii, were found to contain a mixture of chlorotypes and nuclear haplotypes that distinguish P. sylvestris var. mongolica and P. densiflora, in support of the hypothesis that they possibly originated via homoploid hybrid speciation following secondary contact and hybridization between P. sylvestris var. mongolica and P. densiflora.  相似文献   

16.
Hybrid speciation represents a relatively rapid form of diversification. Early models of homoploid hybrid speciation suggested that reproductive isolation between the hybrid species and progenitors primarily resulted from karyotypic differences between the species. However, genic incompatibilities and ecological divergence may also be responsible for isolation. Iris nelsonii is an example of a homoploid hybrid species that is likely isolated from its progenitors primarily by strong prezygotic isolation, including habitat divergence, floral isolation and post-pollination prezygotic barriers. Here, we used linkage mapping and quantitative trait locus (QTL) mapping approaches to investigate genomic collinearity and the genetic architecture of floral differences between I. nelsonii and one of its progenitor species I. hexagona. The linkage map produced from this cross is highly collinear with another linkage map produced between I. fulva and I. brevicaulis (the two other species shown to have contributed to the genomic makeup of I. nelsonii), suggesting that karyotypic differences do not contribute substantially to isolation in this homoploid hybrid species. Similar to other studies of the genetic architecture of floral characteristics, at least one QTL was found that explained >20% variance in each color trait, while minor QTLs were detected for each morphological trait. These QTLs will serve as hypotheses for regions under selection by pollinators.  相似文献   

17.
During evolutionary history many grasses from the tribe Triticeae have undergone interspecific hybridization, resulting in allopolyploidy; whereas homoploid hybrid speciation was found only in rye. Homoeologous chromosomes within the Triticeae preserved cross‐species macrocolinearity, except for a few species with rearranged genomes. Aegilops markgrafii, a diploid wild relative of wheat (2n = 2x = 14), has a highly asymmetrical karyotype that is indicative of chromosome rearrangements. Molecular cytogenetics and next‐generation sequencing were used to explore the genome organization. Fluorescence in situ hybridization with a set of wheat cDNAs allowed the macrostructure and cross‐genome homoeology of the Ae. markgrafii chromosomes to be established. Two chromosomes maintained colinearity, whereas the remaining were highly rearranged as a result of inversions and inter‐ and intrachromosomal translocations. We used sets of barley and wheat orthologous gene sequences to compare discrete parts of the Ae. markgrafii genome involved in the rearrangements. Analysis of sequence identity profiles and phylogenic relationships grouped chromosome blocks into two distinct clusters. Chromosome painting revealed the distribution of transposable elements and differentiated chromosome blocks into two groups consistent with the sequence analyses. These data suggest that introgressive hybridization accompanied by gross chromosome rearrangements might have had an impact on karyotype evolution and homoploid speciation in Ae. markgrafii.  相似文献   

18.
Hybridization and introgression can play an important role in speciation. Here, we examine their roles in the origin and evolution of Picea purpurea, a diploid spruce species occurring on the Qinghai–Tibet Plateau (QTP). Phylogenetic relationships and ecological differences between this species and its relatives, P. schrenkiana, Plikiangensis and Pwilsonii, are unclear. To clarify them, we surveyed sequence variation within and between them for 11 nuclear loci, three chloroplast (cp) and two mitochondrial (mt) DNA fragments, and examined their ecological requirements using ecological niche modelling. Initial analyses based on 11 nuclear loci rejected a close relationship between P. schrenkiana and Ppurpurea. BP&P tests and ecological niche modelling indicated substantial divergence between the remaining three species and supported the species status of P. purpurea, which contained many private alleles as expected for a well‐established species. Sequence variation for cpDNA and mtDNA suggested a close relationship between Ppurpurea and Pwilsonii, while variation at the nuclear se1364 gene suggested Ppurpurea was more closely related to Plikiangensis. Analyses of genetic divergence, Bayesian clustering and model comparison using approximate Bayesian computation (ABC) of nuclear (nr) DNA variation all supported the hypothesis that Ppurpurea originated by homoploid hybrid speciation from Pwilsonii and Plikiangensis. The ABC analysis dated the origin of Ppurpurea at the Pleistocene, and the estimated hybrid parameter indicated that 69% of its nuclear composition was contributed by Plikiangensis and 31% by P. wilsonii. Our results further suggested that during or immediately following its formation, P. purpurea was subject to organelle DNA introgression from Pwilsonii such that it came to possess both mtDNA and cpDNA of Pwilsonii. The estimated parameters indicated that following its origin, Ppurpurea underwent an expansion during/after the largest Pleistocene glaciation recorded for the QTP.  相似文献   

19.
On Lord Howe Island, speciation is thought to have taken place in situ in a diverse array of distantly related plant taxa (Metrosideros, Howea and Coprosma; Proc. Natl Acad. Sci. USA 108 , 2011, 13188). We now investigate whether the speciation processes were driven by divergent natural selection in each genus by examining the extent of ecological and genetic divergence. We present new and extensive, ecological and genetic data for all three genera. Consistent with ecologically driven speciation, outlier loci were detected using genome scan methods. This mechanism is supported by individual‐based analyses of genotype–environment correlations within species, demonstrating that local adaptation is currently widespread on the island. Genetic analyses show that prezygotic isolating barriers within species are currently insufficiently strong to allow further population differentiation. Interspecific hybridization was found in both Howea and Coprosma, and species distribution modelling indicates that competitive exclusion may result in selection against admixed individuals. Colonization of new niches, partly fuelled by the rapid generation of new adaptive genotypes via hybridization, appears to have resulted in the adaptive radiation in Coprosma – supporting the ‘Syngameon hypothesis’.  相似文献   

20.
Nup96 is involved in a lethal hybrid incompatibility between 2 fruit fly species, Drosophila melanogaster and Drosophila simulans. Recurrent adaptive evolution drove the rapid functional divergence of Nup96 in both the D. melanogaster and the D. simulans lineages. Functional divergence of Nup96 between these 2 species is unexpected as Nup96 encodes part of the Nup107 subcomplex, an architectural component of nuclear pore complexes, the macromolecular channels in nuclear envelopes that mediate nucleocytoplasmic traffic in all eukaryotes. Here we study the evolutionary histories of 5 of Nup96's protein interactors--3 stable Nup107 subcomplex proteins (Nup75, Nup107, and Nup133) and 2 mobile nucleoporins (Nup98 and Nup153)--and show that all 5 have experienced recurrent adaptive evolution. These results are consistent with selection-driven coevolution among molecular interactors within species causing the incidental evolution of incompatible interactions seen in hybrids between species. We suggest that genetic conflict-driven processes may have contributed to the rapid molecular evolution of Nup107 subcomplex genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号