首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enzymatic biofuel cells (BFC) have a great potential as a small power source, but their practical applications are being hampered by short lifetime and low power density. This study describes the direct immobilization of glucose oxidase (GOx) onto the carbon paper in the form of highly stable and active enzyme precipitation coatings (EPCs), which can improve the lifetime and power density of BFCs. EPCs were fabricated directly onto the carbon paper via a three-step process: covalent attachment (CA), enzyme precipitation, and chemical crosslinking. GOx-immobilized carbon papers via the CA and EPC approaches were used as an enzyme anode and their electrochemical activities were tested under the BFC-operating mode. The BFCs with CA and EPC enzyme anodes produced the maximum power densities of 50 and 250 μW/cm(2) , respectively. The BFC with the EPC enzyme anode showed a stable current density output of >700 μA/cm(2) at 0.18 V under continuous operation for over 45 h. When a maple syrup was used as a fuel under ambient conditions, it also produced a stable current density of >10 μA/cm(2) at 0.18 V for over 25 h. It is anticipated that the direct immobilization of EPC on hierarchical-structured electrodes with a large surface area would further improve the power density of BFCs that can make their applications more feasible.  相似文献   

2.
Biofuel cell system employing thermostable glucose dehydrogenase   总被引:1,自引:0,他引:1  
Enzyme biofuel cells utilizing glucose dehydrogenase as an anode enzyme were constructed. The glucose dehydrogenase is composed of a catalytic subunit, an electron transfer subunit, and a chaperon-like subunit. Cells, constructed using either a glucose dehydrogenase catalytic subunit or a glucose dehydrogenase complex, displayed power outputs that were dependent on the glucose concentration. The catalytic subunit in the anode maintained its catalytic activity for 24 h of operation. The biofuel cell which composed of glucose dehydrogenase complex functioned successfully even in the absence of an electron mediator at the anode cell. These results indicate the potential application of this thermostable glucose dehydrogenase for the construction of a compartment-less biofuel cell.  相似文献   

3.
We report on an amperometric biosensor that is based on a nanocomposite of carbon nanotubes (CNT), a nano-thin plasma-polymerized film (PPF), and glucose oxidase (GOx) as an enzyme model. A mixture of the GOx and a CNT film is sandwiched with 10-nm-thick acetonitrile PPFs. Under PPF layer was deposited onto a sputtered gold electrode. To facilitate the electrochemical communication between the CNT layer and GOx, CNT was treated with nitrogen or oxygen plasma. The resulting device showed that the oxidizing current response due to enzymatic reaction was 4-16-fold larger than that with only CNT or PPF, showing that the PPF and/or plasma process is an enzyme-friendly platform for designing electrochemical communication from the reaction center of GOx to the electrode via CNTs. The optimized glucose biosensor showed high sensitivity (sensitivity of 42 microA mM(-1)cm(-2), correlation coefficient of 0.992, linear response range of 0.025-2.2 mM, and a detection limit of 6 microM at signal/noise ratio of 3, +0.8 V versus Ag/AgCl), high selectivity (almost no interference by 0.5 mM ascorbic acid) for glucose quantification, and rapid response (<4 s to reach 95% of maximum response). Additionally, the devices showed a small and stable background current (0.35+/-0.013 microA) compared with the glucose response (ca. 10 microA at 10mM glucose) and suitable reproducibility from sample-to-sample (<3%, n=4).  相似文献   

4.
Progress in miniature chip-design raises demands for implantable power sources in health care applications such as continuous glucose monitoring of diabetic patients. Pioneered by Adam Heller, miniaturized enzymatic biofuel cells (mBCs) convert blood sugars into electrical energy by employing for example glucose oxidase (GOx) on the anode and bilirubin oxidase on the cathode. To match application demands it is crucial to increase lifetime and power output of mBCs. The power output has been limited by the performance of GOx on the anode. We developed a glucose oxidase detection assay (GODA) as medium-throughput screening system for improving GOx properties by directed protein evolution. GODA is a reaction product detection assay based on coupled enzymatic reactions leading to NADPH formation which is recorded at 340 nm. The main advantage of the assay is that it detects the production of d-gluconolactone instead of the side-product hydrogen peroxide and enables to improve bioelectrochemical properties of GOx. For validating the screening system, a mutagenic library of GOx from Aspergillus niger (EC 1.1.3.4) was generated and screened for improved activity using Saccharomyces cerevisiae as host. Directed evolution resulted in a GOx mutant I115V with 1.4-1.5-fold improved activity for beta-d-glucose (Vmax from 7.94 to 10.81 micromol min(-1) mg(-1); Km approximately 19-21 mM) and oxygen consumption kinetics correlate well [Vmax (O2) from 5.94 to 8.34 micromol min(-1) mg(-1); Km (O2) from 700 to 474 microM]. The developed mutagenic protocol and GODA represent a proof-of-principle that GOx can be evolved by directed evolution in S. cerevisiae for putative use in biofuel cells.  相似文献   

5.
We report a simple electrochemical approach for the immobilization of glucose oxidase (GOx) on reduced graphene oxide (RGO). The immobilization of GOx was achieved in a single step without any cross linking agents or modifiers. A simple solution phase approach was used to prepare exfoliated graphene oxide (GO), followed by electrochemical reduction to get RGO-GOx biocomposite. The direct electrochemistry of GOx was revealed at the RGO-GOx modified glassy carbon electrode (GCE). The electrocatalytic and electroanalytical applications of the proposed film were studied by cyclic voltammetry (CV) and amperometry. It is notable that the glucose determination has been achieved in mediator-free conditions. RGO-GOx film showed very good stability, reproducibility and high selectivity. The developed biosensor exhibits excellent catalytic activity towards glucose over a wide linear range of 0.1-27mM with a sensitivity of 1.85μAmM(-1)cm(-2). The facile and easy electrochemical approach used for the preparation of RGO-GOx may open up new horizons in the production of cost-effective biosensors and biofuel cells.  相似文献   

6.
One of the challenges in electrochemical biosensor design is gaining a fundamental knowledge of the processes underlying immobilisation of the molecules onto the electrode surface. This is of particular importance in biocomposite sensors where concerns have arisen as to the nature of the interaction between the biological and synthetic molecules immobilised. We examined the use of the Quartz Crystal Microbalance with Dissipation (QCM-D) as a tool for fundamental analyses of a model sensor constructed by the immobilisation of cobalt(II) phthalocyanine (TCACoPc) and glucose oxidase (GOx) onto a gold-quartz electrode (electrode surface) for the enhanced detection of glucose. The model sensor was constructed in aqueous phase and covalently linked the gold surface to the TCACoPc, and the TCACoPc to the GOx, using the QCM-D. The aqueous metallophthalocyanine (MPc) formed a multi-layer over the surface of the electrode, which could be removed to leave a monolayer with a mass loading that compared favourably to the theoretical value expected. Analysis of frequency and dissipation plots indicated covalent attachment of glucose oxidase onto the metallophthalocyanine layer. The amount of GOx bound using the model system compared favourably to calculations derived from the maximal amperometric functioning of the electrochemical sensor (examined in previously-published literature, Mashazi, P.N., Ozoemena, K.I., Nyokong, T., 2006. Electrochim. Acta 52, 177-186), but not to theoretical values derived from dimensions of GOx as established by crystallography. The strength of the binding of the GOx film with the TCACoPc layer was tested by using 2% SDS as a denaturant/surfactant, and the GOx film was not found to be significantly affected by exposure to this. This paper thus showed that QCM-D can be used in order to model essential processes and interactions that dictate the functional parameters of a biosensor.  相似文献   

7.
The capping of electron relay units in mesoporous carbon nanoparticles (MPC NPs) by crosslinking of different enzymes on MPC NPs matrices leads to integrated electrically contacted bienzyme electrodes acting as dual biosensors or as functional bienzyme anodes and cathodes for biofuel cells. The capping of ferrocene methanol and methylene blue in MPC NPs by the crosslinking of glucose oxidase (GOx) and horseradish peroxidase (HRP) yields a functional sensing electrode for both glucose and H2O2, which also acts as a bienzyme cascaded system for the indirect detection of glucose. A MPC NP matrix, loaded with ferrocene methanol and capped by GOx/lactate oxidase (LOx), is implemented for the oxidation and detection of both glucose and lactate. Similarly, MPC NPs, loaded with 2,2′‐azino‐bis(3‐ethylbenzo­thiazoline‐6‐sulphonic acid), are capped with bilirubin oxidase (BOD) and catalase (Cat), to yield a bienzyme O2 reduction cathode. A biofuel cell that uses the bienzyme GOx/LOx anode and the BOD/Cat cathode, glucose and/or lactate as fuels, and O2 and/or H2O2 as oxidizers is assembled, revealing a power efficiency of ≈90 μW cm?2 in the presence of the two fuels. The study demonstrates that multienzyme MPC NP electrodes may improve the performance of biofuel cells by oxidizing mixtures of fuels in biomass.  相似文献   

8.
Platinum nanowires (PtNWs) prepared by electrodeposition method with the help of porous anodic aluminum oxide (AAO) templates have been solubilized in chitosan (CHIT) together with carbon nantubes (CNTs) to form a PtNW-CNT-CHIT organic-inorganic system. The resulting PtNW-CNT-CHIT material brings capabilities for utilizing synergic action of PtNWs and CNTs to facilitate electron-transfer process in electrochemical sensor design. The PtNW-CNT-CHIT film modified electrode offered a significant decrease in the overvoltage for the hydrogen peroxide and showed to be excellent amperometric sensors for hydrogen peroxide at -0.1 V over a wide range of concentrations, and the sensitivity is 260 microAmM-1cm-2. As an application example, by linking glucose oxidase (GOx), an amplified biosensor toward glucose was prepared. The glucose biosensor exhibits a selective determination of glucose at -0.1 V with a linear response range of 5 x 10(-6) to 1.5 x 10(-2)M with a correlation coefficient of 0.997, and response time <10s. The high sensitivity of the glucose biosensor is up to 30 microAmM-1cm-2 and the detection limit was 3 microM. The biosensor displays rapid response and expanded linear response range, and excellent repeatability and stability.  相似文献   

9.
Glucose oxidase (GOx) was immobilized onto glassy carbon electrode (GCE) that modified by reduced graphene oxide-gold nanoparticles- poly neutral red (RGO/AuNPs/PNR) nanocomposite. The composite was analyzed by scanning electron microscope (SEM), energy dispersive x-ray (EDX) spectroscopy, atomic force microscopy (AFM), attenuated total reflectance (ATR), cyclic voltammetry (CV), chronoamperometry and electrochemical impedance spectroscopy (EIS). SEM/EDX analysis showed the morphological of the nanocomposite. AFM results showed the morphology and structure of the RGO/AuNPs and RGO surfaces. The covalent bonding between glucose oxidase and composite was confirmed by ATR technique. The electrochemical experiments were done in 100 mM phosphate buffer at pH 7 and temperature of 25 °C with three electrodes including Ag/AgCl, platinum wire and the modified GCE as the reference electrode, the auxiliary electrode and working electrode respectively. The electrochemical results confirmed the activity and direct electron transfer of immobilized enzyme. The immobilized electroactive GOx concentration was estimated 3.06 × 10−11 mol cm−2. The results showed the immobilized enzyme had a good stability and maintained 90% of its performance after two weeks. The nanocomposite bioanode in an air-birthing biofuel cell and 100 mM glucose concentration showed 176 μWcm−2 Power density. This strategy could be used for GOx-based biofuel cells.  相似文献   

10.
A high-performance bioanode based on the composite of carbon nanotubes (CNTs)-immobilized mediator and silk film (SF)-immobilized glucose oxidase (GOD) was developed for glucose/O(2) biofuel cell (BFC). Ferrocenecarboxaldehyde (Fc) was used as the mediator and covalently immobilized on the ethylenediamine (EDA)-functionalized CNTs (CNTs-EDA). GOD was cross-linked on the SF with glutaraldehyde (GA) as the cross-linking agent. The resulting electrode (CNTs-Fc/SF-GOD/glassy carbon (GC) electrode) exhibited good catalytic activity towards glucose oxidation and excellent stability. For the assembled glucose/O(2) BFC with the CNTs-Fc/SF-GOD/GC electrode as the bioanode and a commercial E-TEK Pt/C modified GC electrode as the cathode, the open circuit potential is 0.48 V and the maximum power density of 50.70 μW cm(-2) can be achieved at 0.15 V.  相似文献   

11.
Layer-by-layer assembly of glucose oxidase (GOx) with single-wall carbon nanotubes (SWCNTs) is achieved on the electrode surface based on the electrostatic attraction between positively charged GOx in pH 3.8 buffer and negatively charged carboxylic groups of CNTs. The cyclic voltammetry and electrochemical impedance spectroscopy are used to characterize the formation of multilayer films. In deaerated buffer solutions, the cyclic voltammetry of the multilayer films of {GOx/CNT}n shows two pairs of well-behaved redox peaks that are assigned to the redox reactions of CNTs and GOx, respectively, confirming the effective immobilization of GOx on CNTs using the layer-by-layer technique. The redox peak currents of GOx increase linearly with the increased number of layers indicating the uniform growth of GOx in multilayer films. The dependence of the cyclic voltammetric response of GOx in multilayer films on the scan rate and pH is also studied. A linear decrease of the reduction current of oxygen at the {GOx/CNT}-modified electrodes with the addition of glucose suggests that such multilayer films of GOx retain the bioactivity and can be used as reagentless glucose biosensors.  相似文献   

12.
The performance of a new glucose biosensor based on the combination of biocatalytic activity of glucose oxidase (GOx) with the electrocatalytic properties of CNTs and neutral red (NR) for the determination of glucose is described. This sensor is comprised of a multiwalled carbon nanotubes (MWNTs) conduit functionalized with NR and Nafion (Nf) as a binder and glucose oxidase as a biocatalyst. Neutral red was covalently immobilized on carboxylic acid groups of the CNTs via carbodiimide reaction. The functionalized MWNTs were characterized by microscopic, spectroscopic and thermal methods. The MWNT-NR-GOx-Nf nanobiocomposite was prepared by mixing the GOx solution with NR functionalized CNTs followed by mixing homogeneously with Nafion. The performance of the MWNT-NR-GOx-Nf nanobiocomposite modified electrode was examined by electrochemical impedance spectroscopy and cyclic voltammetry. The catalytic reduction of hydrogen peroxide liberated from the enzymatic reaction of glucose oxidase upon glucose with NR functionalized CNTs leads to the selective detection of glucose. The excellent electrocatalytic activity and the influence of nanobiocomposite film result in good characteristics such as low potential detection of glucose with a large determination range from 1 x 10(-8) to 1 x 10(-3)M with a detection limit of 3 x 10(-9)M glucose, a short response time (with 4s), good stability and anti-interferent ability. The improved electrocatalytic activity and stability made the MWNT-NR-GOx-Nf nanobiocomposite biosensor system a potential platform to immobilize different enzymes for other bioelectrochemical applications.  相似文献   

13.
The enzyme glucose oxidase (GOx) has been immobilized electrostatically onto carbon and platinum electrodes modified with mixed ferrocene–cobaltocenium dendrimers. The ferrocene units have been used successfully as mediators between the GOx and the electrode under anaerobic conditions. In experiments carried out in the presence of oxygen, the cobaltocenium moieties act as electrocatalysts in the reduction of the oxygen in the solution, thus making possible the determination of the oxygen variation due to the enzymatic reaction, with high sensitivity. The current response of the electrode was determined by measuring steady-state current values obtained applying a constant potential. The effect of the substrate concentration, the dendrimer generation, the thickness of the dendrimer layer, interferences, and storage on the response of the sensors were investigated.  相似文献   

14.
The immobilization process of glucose oxidase(GOx) in the poly(1,3-diaminobenzene) (poly(1,3-DAB)) network was closely investigated in situ using an electrochemical quartz crystal microbalance(EQCM). GOx captured in approximately 50 nm thick poly-1,3-DAB layer causes a 514 Hz frequency increase, corresponding to 541 ng, and distributes mostly in the outer part of the polymer film. The presence of poly-L-lysine and glutaraldehyde during electropolymerization of poly(1,3-DAB) improves sensitivity by raising the amount of GOx immobilized. Adding a protective membrane on to the enzyme layer from poly(tetrafluoroethylene) (PTFE) dispersed in aqueous media lets the entire fabrication procedure finish perfectly without nonaqueous solvent. The finalized needle-type glucose sensors show competent functions in sensitivity, stability, biocompatibility, lifetime, interference and reproducibility.  相似文献   

15.
Glucose sensing electrodes have been realized by immobilizing glucose oxidase (GOx) on unmodified edge plane of highly oriented pyrolytic graphite (epHOPG) and the native oxide of heavily doped silicon (SiO2/Si). Both kinds of electrode show direct interfacial electron transfer due to the redox process of the immobilized GOx. The measured formal potential of the redox process agrees with that of the native enzyme, suggesting that the immobilized GOx has retained its enzymatic activity. The electron transfer rates of the GOx immobilized electrode are 2s(-1) for GOx/epHOPG electrode and 7.9s(-1) for GOx/SiO2/Si electrode, which are greater than those for which GOx is immobilized on modified electrodes, probably due to the fact that the enzyme makes direct contact to electrode surface. The preservation of the enzymatic activity of the immobilized GOx has been confirmed by observing the response of the GOx/epHOPG and GOx/SiO2/Si electrodes to glucose with a detection limit of 0.050 mM. The response signals the catalyzed oxidation of glucose and, therefore, confirms that the immobilized GOx retained its enzymatic activity. The properties of the electrode as a glucose sensor are presented.  相似文献   

16.
Huang Y  Qin X  Li Z  Fu Y  Qin C  Wu F  Su Z  Ma M  Xie Q  Yao S  Hu J 《Biosensors & bioelectronics》2012,31(1):357-362
Enzyme immobilization is one of the key factors in constructing high-performance enzyme biosensors and biofuel cells (BFCs). Herein, we propose a new protocol for efficient immobilization of a glycoprotein enzyme based on the interaction of the 1, 2- or 1, 3-diols in the glycoprotein with a boronic acid functionalized monomer. Briefly, casting a mixture of glucose oxidase (GOx) and anilineboronic acid (ABA) followed by a NaAuCl(4) solution to an Au-plated Au electrode surface yielded a GOx-poly(ABA) (PABA)-gold nanoparticle (Au(nano)) bionanocomposite, and chitosan (CS) was then cast and air-dried. In the present protocol, the small-sized Au(nano) or Au subnanostructures can form near/on the enzyme molecule, which greatly promotes the electron transfer of enzymatic reaction and enhances the amperometric responses. The thus-prepared CS/GOx-PABA-Au(nano)/Au-plated Au electrode worked well in the first-/second generation biosensing modes and as a bioanode in a monopolar biofuel cell, with analytical or cell-power performance superior to those of most analogues hitherto reported.  相似文献   

17.
Various types of thin-film glucose biosensors based on the use of the enzyme glucose oxidase (GOx) have been developed. The luminescent oxygen probe Ru(dpp)--whose emission is quenched by oxygen--is used to measure the consumption of oxygen. Three different combinations of oxygen transducer and sol-gel immobilized GOx were tested. In the first, GOx was sandwiched between a sol-gel layer doped with Ru(dpp) and a second sol-gel layer composed of pure sol-gel (the 'sandwich' configuration). In the second, a sol-gel layer doped with Ru(dpp) was covered with sol-gel entrapped GOx (the 'two-layer configuration'). In the third, both GOx and a sol-gel powder containing GOx were incorporated into a single sol-gel phase (the 'powder configuration'). In all cases, it was found to be essential to add sorbitol which results in a more porous sol-gel in which diffusion is not impaired. The sandwich configuration provides the highest enzyme activity and the largest dynamic range (0.1-15 mM), but suffers from a distinct decrease in sensitivity upon prolonged use. The two-layer configuration has the fastest response time (t90 = 50 s), while the 'powder configuration' provides the best operational lifetime. The storage stability of all configurations exceeds 4 months if stored at 4 degrees C. In an Appendix, equations are derived which describe the response of such sensors, how the effect of varying oxygen supply can be compensated for by making use of two sensors, one sensitive to oxygen only, the other to both oxygen and glucose, and how such sensors can be calibrated using two calibrators only.  相似文献   

18.
Chen C  Wang L  Tan Y  Qin C  Xie F  Fu Y  Xie Q  Chen J  Yao S 《Biosensors & bioelectronics》2011,26(5):2311-2316
Rapid oxidation of dopamine (DA) or L-noradrenaline (NA) by K(3)Fe(CN)(6) yields poly(DA) (PDA(C)) or poly(NA) (PNA(C)) with glucose oxidase (GOx) effectively entrapped, and such an enzyme-entrapped catecholamine polymer is cast on an Au electrode followed by chitosan (CS) strengthening for biosensing and fabrication of a biofuel cell (BFC). The optimized glucose biosensor of CS/PDA(C)-GOx/Au displays an extremely high sensitivity up to 135 μA mM(-1) cm(-2), a very low limit of detection of 0.07 μM, a response time of <3 s, good suppression of interferents, striking thermostability (lifetime of 3 weeks at 60°C and over 2 months at 30°C), and high resistance to urea denaturation. The biosensor also works well in the second generation biosensing mode with p-benzoquinone (BQ) or ferrocene monocarboxylic acid (Fc) as an artificial mediator, with greatly broadened linear detection ranges (2.0 μM-48.0 mM for BQ and 2.0 μM-16.0 mM for Fc) and up to mA cm(-2)-scale glucose-saturated current density. The good permeability of artificial mediators across the enzyme film enables the quantification of the surface concentration of immobilized GOx on the basis of a reported kinetic model, and UV-Vis spectrophotometry is used to measure the enzymatic activity, revealing high enzymatic activity/load at CS/PDA(C)-GOx/Au. A BFC is also successfully fabricated with a bioanode of CS/PDA(C)-GOx/Au in phosphate buffer solution containing 100 mM glucose and 4.0 mM BQ and a carbon cathode in Nafion-membrane-isolated acidic KMnO(4), and its maximum power density of 1.62 mW cm(-2) is superior to those of most BFC hitherto reported.  相似文献   

19.
A comparison of the analytical performances of several enzyme biosensor designs, based on the use of different tailored gold nanoparticle-modified electrode surfaces, is discussed. Glucose oxidase (GOx) and the redox mediator tetrathiafulvalene were coimmobilized in all cases by crosslinking with glutaraldehyde. The biosensor designs tested were based on the use of (i) colloidal gold (Au(coll)) bound on cysteamine (Cyst) monolayers self-assembled on a gold disk electrode (AuE) and (ii) glassy carbon electrodes (GCEs) modified with electrodeposited gold nanoparticles (nAu). The results obtained with these designs were compared with those provided by a GOx/Cyst-AuE and a GOx/MPA-AuE. In the second case (ii), configurations based on direct immobilization of GOx on nAu (GOx/nAu-GCE) or on Cyst or MPA self-assembled monolayers (SAMs) previously bound on gold nanoparticles (GOx/Cyst-nAu-GCE or GOx/MPA-nAu-GCE, respectively) were compared. The analytical characteristics of glucose calibration plots and the kinetic parameters of the enzyme reaction were compared for all of the biosensors tested. The GOx/Au(coll)-Cyst-AuE design showed a sensitivity for glucose determination higher than that achieved with GOx/Cyst-AuE and GOx/Au(coll)-Cyst/Cyst-AuE and similar to that achieved with GOx/MPA-AuE. Moreover, the useful lifetime of one single GOx/Au(coll)-Cyst-AuE was 28 days, remarkably longer than that of the other GOx biosensor designs.  相似文献   

20.
For the first time glucose oxidase (GOx) was successfully co-deposited on nickel-oxide (NiO) nanoparticles at a glassy carbon electrode. In this paper we present a simple fabrication method of biosensor which can be easily operated without using any specific reagents. Cyclic voltammetry was used for electrodeposition of NiO nanoparticle and GOx immobilization. The direct electron transfer of immobilized GOx displays a pair of well defined and nearly reversible redox peaks with a formal potential (E(0')) of -0.420 V in pH 7 phosphate buffer solution and the response shows a surface controlled electrode process. The surface coverage and heterogeneous electron transfer rate constant (k(s)) of GOx immobilized on NiO film glassy carbon electrode are 9.45 x 10(-13)mol cm(-2) and 25.2+/-0.5s(-1), indicating the high enzyme loading ability of the NiO nanoparticles and great facilitation of the electron transfer between GOx and NiO nanoparticles. The biosensor shows excellent electrocatalytical response to the oxidation of glucose when ferrocenmethanol was used as an artificial redox mediator. Furthermore, the apparent Michaelis-Menten constant 2.7 mM, of GOx on the nickel oxide nanoparticles exhibits excellent bioelectrocatalytic activity of immobilized enzyme toward glucose oxidation. In addition, this glucose biosensor shows fast amperometric response (3s) with the sensitivity of 446.2nA/mM, detection limit of 24 microM and wide concentration range of 30 microM to 5mM. This biosensor also exhibits good stability, reproducibility and long life time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号