首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The proper formation and function of the vertebrate heart requires a multitude of specific cell and tissue interactions. These interactions drive the early specification and assembly of components of the cardiovascular system that lead to a functioning system before the attainment of the definitive cardiac and vascular structures seen in the adult. Many of these adult structures are hypothesized to require both proper molecular and physical cues to form correctly. Unlike any other organ system in the embryo, the cardiovascular system requires concurrent function and formation for the embryo to survive. An example of this complex interaction between molecular and physical cues is the formation of the valves of the heart. Both molecular cues that regulate cell transformation, migration, and extracellular matrix deposition, and physical cues emanating from the beating heart, as well as hemodynamic forces, are required for valvulogenesis. This review will focus on molecules and emerging pathways that guide early events in valvulogenesis.  相似文献   

2.
Cell migration is an essential process that controls many physiological functions ranging from development to immunity. In vivo, cells are guided by a combination of physical and chemical cues. Chemokines have been the center of attention for years, but the role of physical properties of tissues has been under-investigated, despite the fact that these properties can be drastically modified in pathology. Here, we discuss the role of one important tissue physical property, hydraulic resistance, in cell guidance, a phenomenon referred to as barotaxis, and describe the underlying physical principles and molecular mechanisms. Finally, we speculate on the putative role of barotaxis in physiological processes involving immune and cancer cells.  相似文献   

3.
The ability of tissue engineered scaffolds to direct cell behavior is paramount for scaffold design. Cell migration can be directed by various methods including chemical, adhesive, mechanical, and topographical cues. Electrospinning has emerged as a popular method to control topography and create fibrous scaffolds similar to that found in extracellular matrix. One major hurdle is limited cell infiltration and several studies have explored methods to alter electrospun materials to increase scaffold porosity; however, uniform cell distributions within scaffolds is still limited. Towards this, we investigated the motility of HUVECs on a model system of electrospun hyaluronic acid fibers under a gradient of VEGF and found that topographical cues dominate cell motility direction. Using time‐lapse microscopy, cell aspect ratio, and migration angle were measured; cells were directed in a chemical gradient and/or on aligned electrospun fibers. Measurements of the persistence time demonstrated an additive effect of the chemical gradient and fiber alignment. However, when fibers were aligned perpendicular to a chemical gradient, cells were directed by fiber alignment and there was no effect of the chemical gradient. These results suggest that topographical cues may be more influential than chemical cues in directing cell motility and should be considered in material design. Biotechnol. Bioeng. 2013; 110: 1249–1254. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
The architecture of the extracellular matrix (ECM) directs cell behavior by providing spatial and mechanical cues to which cells respond. In addition to soluble chemical factors, physical interactions between the cell and ECM regulate primary cell processes, including differentiation, migration, and proliferation. Advances in microtechnology and, more recently, nanotechnology provide a powerful means to study the influence of the ECM on cell behavior. By recapitulating local architectures that cells encounter in vivo, we can elucidate and dissect the fundamental signal transduction pathways that control cell behavior in critical developmental, physiological, and pathological processes.  相似文献   

5.
Cell migration is oriented by cues from the environment. Such cues are read and interpreted by the cell and translated into a reorganization of the migration machinery to steer migration. Receptors at the cell surface are central to detect these cues. These receptors can be internalized and this plays an important role in the decision-making process leading to choosing a migration direction. Independently of endocytosis, recent findings suggest that regulation of these receptors and translation of the information they carry into a phenotype is facilitated by their clustering at discrete locations of the plasma membrane. Clathrin-coated structures are archetypal clustering assemblies and thus provide the cell with a finely tunable mechanism for controlling receptor availability. In addition, clathrin-coated structures can be regulated by many factors playing a role in cell migration and thus take part in feedback loop mechanisms that are instrumental in defining a migration direction.  相似文献   

6.
Li J  Lin F 《Trends in cell biology》2011,21(8):489-497
Directed cell migration plays important roles in physiological processes such as host defense, wound healing, cancer metastasis and embryogenesis. Many organisms are capable of directional migration, which can be guided by diverse cellular factors including chemical and electrical cues. Recently, microfluidic devices that consist of small channels with micrometer dimensions are being developed for cell migration studies. These devices can precisely configure and flexibly manipulate chemical concentration gradients and electric fields, and thus can be used to study the complex guiding mechanisms for cell migration. In this paper we highlight recent applications of microfluidic devices for cell migration research, with a focus on electric field-directed cell migration, to provide important and timely updates of this rapidly developing research field.  相似文献   

7.
Chemotaxis, or cell migration guided by chemical cues, is critical for a multitude of biological processes in a diverse array of organisms. Dictyostelium discoideum amoebae rely on chemotaxis to find food and to survive starvation conditions, and we have taken advantage of this system to study the molecular regulation of this vital cell behavior. Previous work has identified phosphoinositide signaling as one mechanism which may contribute to directional sensing and actin polymerization during chemotaxis; a mechanism which is conserved in mammalian neutrophils. In this review, we will discuss recent data on genes and pathways governing directional sensing and actin polymerization, with a particular emphasis on contributions from our laboratory.  相似文献   

8.
Chemotaxis, or cell migration guided by chemical cues, is critical for a multitude of biological processes in a diverse array of organisms. Dictyostelium discoideum amoebae rely on chemotaxis to find food and to survive starvation conditions, and we have taken advantage of this system to study the molecular regulation of this vital cell behavior. Previous work has identified phosphoinositide signaling as one mechanism which may contribute to directional sensing and actin polymerization during chemotaxis; a mechanism which is conserved in mammalian neutrophils. In this review, we will discuss recent data on genes and pathways governing directional sensing and actin polymerization, with a particular emphasis on contributions from our laboratory.  相似文献   

9.
The microenvironment provides both active and passive mechanical cues that regulate cell morphology, adhesion, migration, and metabolism. Although the cellular response to those mechanical cues often requires energy-intensive actin cytoskeletal remodeling and actomyosin contractility, it remains unclear how cells dynamically adapt their metabolic activity to altered mechanical cues to support migration. Here, we investigated the changes in cellular metabolic activity in response to different two-dimensional and three-dimensional microenvironmental conditions and how these changes relate to cytoskeletal activity and migration. Utilizing collagen micropatterning on polyacrylamide gels, intracellular energy levels and oxidative phosphorylation were found to be correlated with cell elongation and spreading and necessary for membrane ruffling. To determine whether this relationship holds in more physiological three-dimensional matrices, collagen matrices were used to show that intracellular energy state was also correlated with protrusive activity and increased with matrix density. Pharmacological inhibition of oxidative phosphorylation revealed that cancer cells rely on oxidative phosphorylation to meet the elevated energy requirements for protrusive activity and migration in denser matrices. Together, these findings suggest that mechanical regulation of cytoskeletal activity during spreading and migration by the physical microenvironment is driven by an altered metabolic profile.  相似文献   

10.
The Florida stone crab, Menippe mercenaria, is an economically and ecologically important species that ranges from North Carolina throughout the Caribbean and the southeastern Gulf of Mexico. However, there is little known about its early life history stages as compared to other commercially important species in the region. The goal of this research was to examine effects of putative cues on metamorphosis from the megalopa stage to the first juvenile stage. Our study investigated the effect of water-soluble exudates from four substrata, as well as natural biofilms, and exudates from adult stone crabs. In addition, the influence of natural substrata was compared to that of artificial substrata. Adult exudate had no significant effect on metamorphosis, despite a wide range of tested concentrations. In contrast, there was a significant effect on mean time to metamorphosis in experimental groups exposed to multiple cues associated with the brown alga Sargassum fluitans, rubble from stone crab habitat, the eastern oyster Crassostrea virginica, and biofilms associated with the oyster. Furthermore, we provide evidence for metamorphic responses to water-soluble chemical cues, as well as biochemical and physical cues associated with different substrata. Overall results were coherent with the relevant body of previous work on metamorphosis of brachyuran crab larvae and indicate that both physical and chemical cues are important factors in facilitating the settlement and metamorphosis of M. mercenaria larvae in juvenile nursery habitat.  相似文献   

11.
12.
Directed cell migration is a crucial orchestrated process in embryonic development, wound healing, and immune response. The underlying substrate can provide physical and/or chemical cues that promote directed cell migration. Here, using electrospinning we developed substrates of aligned poly(lactic-co-glycolic acid) nanofibres to study the influence of glial cells on endothelial cells (ECs) in a 3-dimensional (3D) co-culture model. ECs build blood vessels and regulate their plasticity in coordination with neurons. Likewise, neurons construct nerves and regulate their circuits in coordination with ECs. In our model, the neuro-vascular cross-talk was assessed using a direct co-culture model of human umbilical vein endothelial cells (HUVECs) and rat Schwann cells (rSCs). The effect of rSCs on ECs behavior was demonstrated by earlier and higher velocity values and genetic expression profiles different of those of HUVECs when seeded alone. We observed 2 different gene expression trends in the co-culture models: (i) a later gene expression of angiogenic factors, such as interleukin-8 (IL-8) and vascular endothelial growth factor (VEGF), and (ii) an higher gene expression of genes involved in actin filaments rearrangement, such as focal adhesion kinase (FAK), Mitogen-activated protein kinase-activated protein kinase 13 (MAPKAPK13), Vinculin (VCL), and Profilin (PROF). These results suggested that the higher ECs migration is mainly due to proteins involved in the actin filaments rearrangement and in the directed cell migration rather than the effect of angiogenic factors. This co-culture model provides an approach to enlighten the neurovascular interactions, with particular focus on endothelial cell migration.  相似文献   

13.
Although there are several computational models that explain the trajectory that cells take during migration, till now little attention has been paid to the integration of the cell migration in a multi-signaling system. With that aim, a generalized model of cell migration and cell-cell interaction under multisignal environments is presented herein. In this work we investigate the spatio-temporal cell-cell interaction problem induced by mechano-chemo-thermotactic cues. It is assumed that formation of a new focal adhesion generates traction forces proportional to the stresses transmitted by the cell to the extracellular matrix. The cell velocity and polarization direction are calculated based on the equilibrium of the effective forces associated to cell motility. It is also assumed that, in addition to mechanotaxis signals, chemotactic and thermotactic cues control the direction of the resultant traction force. This model enables predicting the trajectory of migrating cells as well as the spatial and temporal distributions of the net traction force and cell velocity. Results indicate that the tendency of the cells is firstly to reach each other and then migrate towards an imaginary equilibrium plane located near the source of the signal. The position of this plane is sensitive to the gradient slope and the corresponding efficient factors. The cells come into contact and separate several times during migration. Adding other cues to the substrate (such as chemotaxis and/or thermotaxis) delays that primary contact. Moreover, in all states, the average local velocity and the net traction force of the cells decrease while the cells approach the cues source. Our findings are qualitatively consistent with experimental observations reported in the related literature.  相似文献   

14.
Directed cell migration is a crucial orchestrated process in embryonic development, wound healing, and immune response. The underlying substrate can provide physical and/or chemical cues that promote directed cell migration. Here, using electrospinning we developed substrates of aligned poly(lactic-co-glycolic acid) nanofibres to study the influence of glial cells on endothelial cells (ECs) in a 3-dimensional (3D) co-culture model. ECs build blood vessels and regulate their plasticity in coordination with neurons. Likewise, neurons construct nerves and regulate their circuits in coordination with ECs. In our model, the neuro-vascular cross-talk was assessed using a direct co-culture model of human umbilical vein endothelial cells (HUVECs) and rat Schwann cells (rSCs). The effect of rSCs on ECs behavior was demonstrated by earlier and higher velocity values and genetic expression profiles different of those of HUVECs when seeded alone. We observed 2 different gene expression trends in the co-culture models: (i) a later gene expression of angiogenic factors, such as interleukin-8 (IL-8) and vascular endothelial growth factor (VEGF), and (ii) an higher gene expression of genes involved in actin filaments rearrangement, such as focal adhesion kinase (FAK), Mitogen-activated protein kinase-activated protein kinase 13 (MAPKAPK13), Vinculin (VCL), and Profilin (PROF). These results suggested that the higher ECs migration is mainly due to proteins involved in the actin filaments rearrangement and in the directed cell migration rather than the effect of angiogenic factors. This co-culture model provides an approach to enlighten the neurovascular interactions, with particular focus on endothelial cell migration.  相似文献   

15.
Many physiological phenomena involve directional cell migration. It is usually attributed to chemical gradients in vivo. Recently, other cues have been shown to guide cells in vitro, including stiffness/adhesion gradients or micropatterned adhesive motifs. However, the cellular mechanism leading to these biased migrations remains unknown, and, often, even the direction of motion is unpredictable. In this study, we show the key role of fluctuating protrusions on ratchet-like structures in driving NIH3T3 cell migration. We identified the concept of efficient protrusion and an associated direction index. Our analysis of the protrusion statistics facilitated the quantitative prediction of cell trajectories in all investigated conditions. We varied the external cues by changing the adhesive patterns. We also modified the internal cues using drug treatments, which modified the protrusion activity. Stochasticity affects the short- and long-term steps. We developed a theoretical model showing that an asymmetry in the protrusion fluctuations is sufficient for predicting all measures associated with the long-term motion, which can be described as a biased persistent random walk.  相似文献   

16.
Antipredatory behaviours are important fitness components. The probability of survival decreases if animals fail to respond to signs of danger, but in contrast, energetic costs increase if the response to the threat is exaggerated. We conducted a laboratory experiment designed to examine the behavioural and growth responses of a territorial fish (Atlantic salmon fry, Salmo salar, L.) to different predatory cues (no predatory cues, chemical cues alone, physical cues alone and combined chemical and physical cues). We evaluated the response of Atlantic salmon, focussing on behaviours linked to predator avoidance and to other fitness‐enhancing activities (territory defence and energy acquisition) both during the day and the night. The cost of such responses in terms of growth was assessed and we compared the relative contributions of behaviours in explaining individual growth rate, according to each predation treatment. We demonstrated that the magnitude and nature of behavioural modification varied according to the response variables we considered. An index of predator avoidance and the distance from the food source were affected in an additive fashion by predatory cues (interaction term, p = 0.469 and p = 0.888 for the index of predator avoidance and the distance from the food source respectively); the effect of physical cues was stronger than the effect of chemical cues and the effect of the combined cues was highest. An index of territoriality was affected in a threshold‐like fashion (interaction term, p = 0.040); chemical or physical cues alone had no effect but when both cues were combined, Atlantic salmon significantly reduced their territorial defence. An index of foraging activity was not significantly affected by predatory cues (alone or combined). We detected no effect on the growth rate of Atlantic salmon (p = 0.328). Finally, we found that the relative contribution of behaviours in explaining individual growth rate changed according to the treatments we considered. Overall, these results demonstrated that fish were able to accurately integrate multiple predatory cues and that this information was used to modulate their antipredatory response. Behaviours involved in the response were relatively independent of each other, allowing fish to adopt behavioural tactics that maximized the ratio of net energy gain to predator avoidance.  相似文献   

17.
Many physiological phenomena involve directional cell migration. It is usually attributed to chemical gradients in vivo. Recently, other cues have been shown to guide cells in vitro, including stiffness/adhesion gradients or micropatterned adhesive motifs. However, the cellular mechanism leading to these biased migrations remains unknown, and, often, even the direction of motion is unpredictable. In this study, we show the key role of fluctuating protrusions on ratchet-like structures in driving NIH3T3 cell migration. We identified the concept of efficient protrusion and an associated direction index. Our analysis of the protrusion statistics facilitated the quantitative prediction of cell trajectories in all investigated conditions. We varied the external cues by changing the adhesive patterns. We also modified the internal cues using drug treatments, which modified the protrusion activity. Stochasticity affects the short- and long-term steps. We developed a theoretical model showing that an asymmetry in the protrusion fluctuations is sufficient for predicting all measures associated with the long-term motion, which can be described as a biased persistent random walk.  相似文献   

18.
Throughout evolution, both prokaryotic and eukaryotic cells have developed a variety of biochemical mechanisms to define the direction and proximity of extracellular stimuli. This process is essential for the cell to reply properly to the environmental cues that determine cell migration, proliferation, and differentiation. Chemotaxis is the cellular response to chemical attractants that direct cell migration, a process that plays a central role in many physiological situations, such as host immune responses, angiogenesis, wound healing, embryogenesis, and neuronal patterning, among others. In addition, cell migration takes part in pathological states, including inflammation and tumor metastasis. Indeed, tumor progression to invasion and metastasis depends on the active motility of the invading cancer cells and the endothelial cell bed during tumor neovascularization. Cell migration switches "off" and "on," based on quantitative differences in molecular components such as adhesion receptors, cytoskeletal linking proteins, and extracellular matrix ligands, and by regulating the affinity of membrane-bound chemoattractant receptors. A clear understanding of how cells sense chemoattractants is, therefore, of pivotal importance in the biology of the normal cell as well as in prevention of malignant cell invasion. Here we offer a perspective on cell migration that emphasizes the relationship between cell polarization and cell movement and the importance of the equilibrium between the signals that drive each process for the control of tumor cell invasion.  相似文献   

19.
The directed migration of cells drives the formation of many complex organ systems. Although in this morphogenetic context cells display a strong preference for migrating in organized, cohesive groups, little is known about the mechanisms that coordinate their movements. Recent studies on several model systems have begun to dissect the organization of these migrating tissues in vivo and have shown that cell guidance is mediated by a combination of chemical and mechanical cues.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号