首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cyclin protein behavior has not been systematically investigated in multinucleated cells with asynchronous mitoses. Cyclins are canonical oscillating cell cycle proteins, but it is unclear how fluctuating protein gradients can be established in multinucleated cells where nuclei in different stages of the division cycle share the cytoplasm. Previous work in A. gossypii, a filamentous fungus in which nuclei divide asynchronously in a common cytoplasm, demonstrated that one G1 and one B-type cyclin do not fluctuate in abundance across the division cycle. We have undertaken a comprehensive analysis of all G1 and B-type cyclins in A. gossypii to determine whether any of the cyclins show periodic abundance across the cell cycle and to examine whether cyclins exhibit functional redundancy in such a cellular environment. We localized all G1 and B-type cyclins and notably found that only AgClb5/6p varies in subcellular localization during the division cycle. AgClb5/6p is lost from nuclei at the meta-anaphase transition in a D-box-dependent manner. These data demonstrate that efficient nuclear autonomous protein degradation can occur within multinucleated cells residing in a common cytoplasm. We have shown that three of the five cyclins in A. gossypii are essential genes, indicating that there is minimal functional redundancy in this multinucleated system. In addition, we have identified a cyclin, AgClb3/4p, that is essential only for sporulation. We propose that the cohabitation of different cyclins in nuclei has led to enhanced substrate specificity and limited functional redundancy within classes of cyclins in multinucleated cells.  相似文献   

2.
Regulated protein degradation is essential for eukaryotic cell cycle progression. The anaphase-promoting complex/cyclosome (APC/C) is responsible for the protein destruction required for the initiation of anaphase and the exit from mitosis, including the degradation of securin and B-type cyclins. We initiated a study of the APC/C in the multinucleated, filamentous ascomycete Ashbya gossypii to understand the mechanisms underlying the asynchronous mitosis observed in these cells. These experiments were motivated by previous work which demonstrated that the mitotic cyclin AgClb1/2p persists through anaphase, suggesting that the APC/C may not be required for the division cycle in A. gossypii. We have now found that the predicted APC/C components AgCdc23p and AgDoc1p and the targeting factors AgCdc20p and AgCdh1p are essential for growth and nuclear division. Mutants lacking any of these factors arrest as germlings with nuclei blocked in mitosis. A likely substrate of the APC/C is the securin homologue AgPds1p, which is present in all nuclei in hyphae except those in anaphase. The destruction box sequence of AgPds1p is required for this timed disappearance. To investigate how the APC/C may function to degrade AgPds1p in only the subset of anaphase nuclei, we localized components and targeting subunits of the APC/C. Remarkably, AgCdc23p, AgDoc1p, and AgCdc16p were found in all nuclei in all cell cycle stages, as were the APC/C targeting factors AgCdc20p and AgCdh1p. These data suggest that the AgAPC/C may be constitutively active across the cell cycle and that proteolysis in these multinucleated cells may be regulated at the level of substrates rather than by the APC/C itself.  相似文献   

3.
Summary Cyclin proteins and cyclin-dependent kinases play a key role in the regulation of cell division. We have therefore studied the relationship of the level of four mitotic cyclin proteins and the Cdc2a kinase protein to cell division in maize root tissue with respect to cessation of division as cells leave the primary meristem region, resumption of division in formation of lateral-root primordia, and induced division following wounding. All four mitotic cyclins and Cdc2a were most abundant in dividing cells. The only examined cell cycle protein which was restricted to dividing tissue was cyclin ZmCycB1;2 (previously ZmIb) and may thus be a limiting factor for cell division. All other cyclin proteins, i.e., ZmCycB1;1 (previously ZmIa), ZmCycA1;1 (previously ZmII), and ZmCycB2;1 (previously ZmIII), and the Cdc2a kinase declined shortly after cells had ceased division. The distance from the root tip at which cells ceased division was tissue-specific and reflected the distance at which decrease of cell cycle proteins was detected. Whereas cyclin ZmCycB1;2 rapidly declined to a hardly detectable level in either nucleus or cytoplasm, in the nuclei of nondividing cells there was persistence of Cdc2a and of cyclins ZmCycB1;1, ZmCycCA1;1, and ZmCycB2;1, indicating that there are plant cyclins which are tightly linked to cell division and others that persist, especially in the nuclei, in nondividing cells. The transition from division to differentiation may thus partly be triggered and enforced by the decrease of the cell cycle proteins and especially the decline of cyclins in the cytoplasm. In the resumption of cell division, both in lateral-root formation and in wound response, high nuclear and low cytoplasmic accumulation of cyclin ZmCycB2;1 was the first visible sign of cell dedifferentiation, implying a role for cyclin ZmCycB2;1 in the G0–G1 phase transition. Next, cytoplasmic accumulation of cyclin ZmCycA1;1, followed by a rearrangement of cortical microtubules, was observed and since both the cyclins ZmCycA1;1 and ZmCycB2;1 were found at places of high tubulin concentration, they may function in the microtubule rearrangement for cell division. When the nuclei of dedifferentiating cells had visibly enlarged, all cyclins and Cdc2a accumulated there, possibly contributing to DNA replication and preparation for mitosis. Later, presumably during G2 phase, cytoplasmic accumulation was observed for Cdc2a at low levels, as observed in G2 phase cells of the primary meristem, and for cyclins ZmCycB1;1 and ZmCycB1;2 accumulation was observed above the levels found in undisturbed meristems, suggesting special contributions to late dedifferentiation processes in both wound-induced and lateral meristems.Abbreviations CDK cyclin-dependent kinase - LRP lateral-root primordium - Mt microtubule - FITC fluorescein isothiocyanate - TRITC tetramethylrhodamine isothiocyanate Dedicated to Professor Walter Gustav Url on the occasion of his 70th birthday  相似文献   

4.
BACKGROUND: Successful cell duplication requires orderly progression through a succession of dramatic cell-cycle events. Disruption of this precise coupling can compromise genomic integrity. The coordination of cell-cycle events is thought to arise from control by a single master regulator, cyclin:Cdk, whose activity oscillates. However, we still know very little of how individual cell-cycle events are coupled to this oscillator and how the timing of each event is controlled. RESULTS: We developed an approach with RNA interference (RNAi) and real-time imaging to study cyclin contributions to the rapid syncytial divisions of Drosophila embryos. Simultaneous knockdown of all three mitotic cyclins blocked nuclei from entering mitosis. Despite nuclear arrest, centrosomes and associated myosin cages continued to divide until the midblastula transition. Centrosome division was synchronous throughout the embryo and the period of the uncoupled duplication cycle increased over successive divisions. In contrast to its normal actions, injection of a competitive inhibitor of the anaphase-promoting complex/cyclosome (APC/C) after knockdown of the mitotic cyclins did not interfere with the centrosome-duplication cycles. Finally, we examined how cyclin knockdown affects the onset of cellularization at the midblastula transition and found that nuclear cell-cycle arrest did not advance or delay onset of cellularization. CONCLUSIONS: We show that knockdown of mitotic cyclins allows centrosomes to duplicate in a cycle that is uncoupled from other cell-cycle events. We suggest that high mitotic cyclin normally ensures that the centrosome cycle remains entrained to the nuclear cycle.  相似文献   

5.
Summary Cyclin proteins are components of the regulatory system that controls the orderly progression of the events of cell division. Their sub-cellular location, as well as their fluctuating abundance and their affinities for the cyclin-dependent kinases (CDKs) to which they bind, determine their successive roles during the cell cycle. Here we employ species-specific antibodies to monitor changes in quantity and location of four maize cyclins and maize Cdc2-kinase in dividing maize root tip cells. Maize cyclin Ia occurs in the nuclear matrix and is released when the nuclear envelope breaks down. In contrast, cyclin Ib is cytoplasmic until prophase; it associates transiently with the nuclear envelope and preprophase band (PPB) just before these structures break down and then associates with the condensed chromosomes and spindle region before declining at anaphase. Cyclin II and Cdc2 also occur in the PPB. Occurrence of cyclin Ib and Cdc2 at the PPB concurrent with initiation of breakdown is consistent with previous studies in which microinjection of cyclin-dependent protein kinase indicated that removal of the PPB at the time of nuclear-envelope breakdown is catalysed by a CDK. While cyclins Ia and III are predominantly nuclear prior to mitosis, cyclins Ib and II are predominantly cytoplasmic until prophase then become nuclear. The initial cytoplasmic retention of cyclins Ib and II correlates with their possession of a sequence similar to the cytoplasmic-retention signal of animal cyclin B1. Cyclin II binds to all microtubule arrays during the cell cycle, becoming markedly concentrated in the phragmoplast, and cyclin III associates with the spindle and then the phragmoplast. Cdc2 also occurs in the phragmoplast. Persistence of mitotic cyclins and CDK after mitosis into the cytokinetic stage, as seen in maize, is not paralleled in animal cells, where the cytokinetic mid-body is not so labelled, presumably reflecting the key role of the phragmoplast apparatus in plant cell division.Abbreviations CDK cyclin-dependent kinase - CRS cytoplasmicretention signal - NE nuclear envelope - NEB nuclear-envelope breakdown - NLS nuclear-location signal - PPB preprophase band - FITC fluorescein isothiocyanate - TRITC tetramethylrhodamine isothiocyanate  相似文献   

6.
In the multinucleate filamentous fungus Ashbya gossypii, nuclei divide asynchronously in a common cytoplasm. We hypothesize that the division cycle machinery has a limited zone of influence in the cytoplasm to promote nuclear autonomy. Mitochondria in cultured mammalian cells undergo cell cycle-specific changes in morphology and membrane potential and therefore can serve as a reporter of the cell cycle state of the cytoplasm. To evaluate if the cell cycle state of nuclei in A. gossypii can influence the adjacent cytoplasm, we tested whether local mitochondrial morphology and membrane potential in A. gossypii are associated with the division state of a nearby nucleus. We found that mitochondria exhibit substantial heterogeneity in both morphology and membrane potential within a single multinucleated cell. Notably, differences in mitochondrial morphology or potential are not associated with a specific nuclear division state. Heterokaryon mutants with a mixture of nuclei with deletions of and wild type for the mitochondrial fusion/fission genes DNM1 and FZO1 exhibit altered mitochondrial morphology and severe growth and sporulation defects. This dominant effect suggests that the gene products may be required locally near their expression site rather than diffusing widely in the cell. Our results demonstrate that mitochondrial dynamics are essential in these large syncytial cells, yet morphology and membrane potential are independent of nuclear cycle state.  相似文献   

7.
The eukaryotic cell cycle is regulated by the sequential activation of different CDK/cyclin complexes. Two distinct classes of mitotic cyclin homologues, CYC1 and CYC2, have been identified and cloned for the first time in the ciliate Paramecium. Cyc1 is 324 amino acids long with a predicted molecular mass of 38 kDa, whereas Cyc2 is 336 amino acids long with a predicted molecular mass of 40 kDa. They display 42-51% sequence identity to other eukaryotic mitotic cyclins within the 'cyclin box' region. The conserved 'cyclin box' and 'destruction box' elements can be identified within each of the sequences. Genomic Southern blot analysis indicated that the CYC1 gene has two isoforms, with 92.3% and 85.9% identify at the amino acid level and at the nucleotide level, respectively. Both Cyc1 and Cyc2 proteins showed characteristic patterns of accumulation and destruction during the vegetative cell cycle, with Cyc1 peaking at the point of commitment to division (PCD), and Cyc2 reaching the maximal level late in the cell cycle. Immunoprecipitation experiments with antibodies specific to Cyc1 and Cyc2 indicated that Cyc1 and Cyc2 associate with distinct CDK homologues. Both immunoprecipitates exhibited histone H1 kinase activity that oscillated in the cell cycle in parallel with the respective amount of cyclins present. Histone H1 kinase activity associated with Cyc1 reached a peak at PCD while Cyc2 showed maximal activity when about 75% cells have completed cytokinesis. We propose that Cyc1 may be involved in commitment to division, in association with the CDK that binds to p13suc1, Cdk3, and that the Cyc2/Cdk2 complex may regulate cytokinesis. PCR-amplification revealed similar sequences in Tetrahymena, Sterkiella, Colpoda and Blepharisma, suggesting the conservation of the cyclin genes within ciliates. Although cell cycle regulation in ciliates differs in some respects from that of other eukaryotes, the cyclin motifs have clearly been conserved during evolution.  相似文献   

8.
MPF localization is controlled by nuclear export.   总被引:20,自引:2,他引:18       下载免费PDF全文
A Hagting  C Karlsson  P Clute  M Jackman    J Pines 《The EMBO journal》1998,17(14):4127-4138
In eukaryotes, mitosis is initiated by M phase promoting factor (MPF), composed of B-type cyclins and their partner protein kinase, CDK1. In animal cells, MPF is cytoplasmic in interphase and is translocated into the nucleus after mitosis has begun, after which it associates with the mitotic apparatus until the cyclins are degraded in anaphase. We have used a fusion protein between human cyclin B1 and green fluorescent protein (GFP) to study this dynamic behaviour in real time, in living cells. We found that when we injected cyclin B1-GFP, or cyclin B1-GFP bound to CDK1 (i.e. MPF), into interphase nuclei it is rapidly exported into the cytoplasm. Cyclin B1 nuclear export is blocked by leptomycin B, an inhibitor of the recently identified export factor, exportin 1 (CRM1). The nuclear export of MPF is mediated by a nuclear export sequence in cyclin B1, and an export-defective cyclin B1 accumulates in interphase nuclei. Therefore, during interphase MPF constantly shuttles between the nucleus and the cytoplasm, but the bulk of MPF is retained in the cytoplasm by rapid nuclear export. We found that a cyclin mutant with a defective nuclear export signal does not enhance the premature mitosis caused by interfering with the regulatory phosphorylation of CDK1, but is more sensitive to inhibition by the Wee1 kinase.  相似文献   

9.
10.
Previous work has established that destruction of cyclin B is necessary for exit from mitosis and entry into the next interphase. Sea urchin cyclin B lacking an N-terminal domain is stable, permanently activates cdc2 kinase, resulting in mitotic arrest, and permanently activates the destruction pathway acting on full length cyclin B. Here we have compared the properties of clam cyclins A and B lacking related N-terminal domains. Both cyclin A delta 60 and B delta 97 bind to cdc2 kinase, keep it hyperactivated and block the completion of mitosis. By adding purified delta cyclin proteins to a cell-free system at different cell cycle times, we find that when the cell-free system reaches the cyclin destruction point in the presence of either A delta 60 or B delta 97, the cyclin destruction pathway acting on full length cyclins fails to be turned off. However, the two cyclins differ dramatically in their ability to turn on cyclin destruction. When added to emetine-arrested interphase lysates devoid of endogenous cyclins, only cyclin B delta 97 activates the cyclin destruction system; cyclin A delta 60 does not. This functional difference between the two cyclin types, the first to be described, provides strong support for the idea that the two cyclins have different roles in the cell cycle and suggests that one specialized role of the cyclin B-cdc2 complex is to activate the cyclin destruction pathway and drive cells into interphase of the next cell cycle.  相似文献   

11.
12.
In eukaryotes, mitotic cyclins localize differently in the cell and regulate different aspects of the cell cycle. We investigated the relationship between subcellular localization of cyclins A and B and their functions in syncytial preblastoderm Drosophila embryos. During early embryonic cycles, cyclin A was always concentrated in the nucleus and present at a low level in the cytoplasm. Cyclin B was predominantly cytoplasmic, and localized within nuclei only during late prophase. Also, cyclin B colocalized with metaphase but not anaphase spindle microtubules. We changed maternal gene doses of cyclins A and B to test their functions in preblastoderm embryos. We observed that increasing doses of cyclin B increased cyclin B-Cdk1 activity, which correlated with shorter microtubules and slower microtubule-dependent nuclear movements. This provides in vivo evidence that cyclin B-Cdk1 regulates microtubule dynamics. In addition, the overall duration of the early nuclear cycles was affected by cyclin A but not cyclin B levels. Taken together, our observations support the hypothesis that cyclin B regulates cytoskeletal changes while cyclin A regulates the nuclear cycles. Varying the relative levels of cyclins A and B uncoupled the cytoskeletal and nuclear events, so we speculate that a balance of cyclins is necessary for proper coordination during these embryonic cycles.  相似文献   

13.
D-type cyclins regulate G1 cell cycle progression by enhancing the activities of cyclin-dependent kinases (CDKs), and their expression is frequently altered in malignant cells. We and others have previously shown that cyclin D1 is up-regulated in melanoma cells through adhesion-independent MEK-ERK1/2 signaling initiated by mutant B-RAF. Here, we describe the regulation and role of cyclin D3 in human melanoma cells. Cyclin D3 expression was enhanced in a cell panel of human melanoma cell lines compared with melanocytes and was regulated by fibronectin-mediated phosphatidylinositol 3-kinase/Akt signaling but not MEK activity. RNA interference experiments demonstrated that cyclin D3 contributed to G1-S cell cycle progression and proliferation in melanoma cells. Overexpression of cyclin D1 did not recover the effects of cyclin D3 knockdown. Finally, immunoprecipitation studies showed that CDK6 is a major binding partner for cyclin D3, whereas CDK4 preferentially associated with cyclin D1. Together, these findings demonstrate that cyclin D3 is an important regulator of melanoma G1-S cell cycle progression and that D-type cyclins are differentially regulated in melanoma cells.  相似文献   

14.
Jacobs HW  Keidel E  Lehner CF 《The EMBO journal》2001,20(10):2376-2386
The destruction box (D-box) consensus sequence has been defined as a motif mediating polyubiquitylation and proteolysis of B-type cyclins during mitosis. We show here that the regions with similarity to D-boxes are not required for mitotic degradation of Drosophila Cyclin A. Instead of a simple D-box, a complex N-terminal degradation signal is present in this cyclin. Mutations that impair or abolish mitotic Cyclin A destruction delay progression through metaphase, but only when overexpressed. Moreover, these mutations prevent epidermal cells from entering the first G1 phase of embryogenesis and lead to a complete extra division cycle instead of a timely cell proliferation arrest. Residual Cyclin A activity after mitosis, therefore, has S phase-promoting activity. In principle, an S phase defect could also explain why epidermal cells fail to enter mitosis 16 in mutants lacking zygotic Cyclin A function. However, we demonstrate that this failure of mitosis is not caused simply by DNA replication or damage checkpoints. Entry into mitosis requires a function of Cyclin A that does not depend on the presence of the N-terminal region.  相似文献   

15.
Nuclei in the filamentous, multinucleated fungus Ashbya gossypii divide asynchronously. We have investigated what internal and external signals spatially direct mitosis within these hyphal cells. Mitoses are most common near cortical septin rings found at growing tips and branchpoints. In septin mutants, mitoses are no longer concentrated at branchpoints, suggesting that the septin rings function to locally promote mitosis near new branches. Similarly, cells lacking AgSwe1p kinase (a Wee1 homologue), AgHsl1p (a Nim1-related kinase), and AgMih1p phosphatase (the Cdc25 homologue that likely counteracts AgSwe1p activity) also have mitoses distributed randomly in the hyphae as opposed to at branchpoints. Surprisingly, however, no phosphorylation of the CDK tyrosine 18 residue, the conserved substrate of Swe1p kinases, was detected in normally growing cells. In contrast, abundant CDK tyrosine phosphorylation was apparent in starving cells, resulting in diminished nuclear density. This starvation-induced CDK phosphorylation is AgSwe1p dependent, and overexpressed AgSwe1p is sufficient to delay nuclei even in rich nutrient conditions. In starving cells lacking septins or AgSwe1p negative regulators, the nuclear density is further diminished compared with wild type. We have generated a model in which AgSwe1p may regulate mitosis in response to cell intrinsic morphogenesis cues and external nutrient availability in multinucleated cells.  相似文献   

16.
Control of programmed cyclin destruction in a cell-free system   总被引:24,自引:7,他引:17       下载免费PDF全文
To ask what controls the periodic accumulation and destruction of the mitotic across the cell cycle, we have developed a cell-free system from clam embryos that reproduces several aspects of cyclin behavior. One or more rounds of cyclin proteolysis and resynthesis occur in vitro, and the destruction of the cyclins is highly specific. The onset, duration, and extent of cyclin destruction and the appropriately stagered disappearance of cyclin A and cyclin B are correctly regulated during the first cycle in the cell-free system. Just as in intact cells, lysates made from early interphase cells require further protein synthesis to reach the cyclin destruction point, and lysates made from later stages do not. Using the cell-free system we show that cyclin disappearance requires ATP and Mg2+. By combining lysates from different cell cycle stages, we show that (a) interphase lysates do not contain a dominant inhibitor of cyclin destruction and (b) the timing of cyclin destruction is determined by the cell cycle stage of the cytoplasm rather than the cell cycle stage of the substrate cyclins themselves. Among a large variety of agents tested, only a few affect cyclin destruction. Tosyl-lysine chlormethyl ketone (TLCK, a protease inhibitor), 6-dimethylaminopurine (6-DMAP, a kinase inhibitor), certain sulfhydryl-blocking agents, ZnCl2 and EDTA (but not EGTA) completely block cyclin destruction in vitro. Addition of 1 mM Ca2+ to the cell-free system has no effect on cyclin stability, but 5 mM Ca2+ leads to the rapid destruction of cyclins and a small number of other proteins.  相似文献   

17.
The elegant choreography of metazoan development demands exquisite regulation of cell-division timing, orientation, and asymmetry. In this review, we discuss studies in Drosophila and C. elegans that reveal how the cell cycle machinery, comprised of cyclin-dependent kinase (CDK) and cyclins functions as a master regulator of development. We provide examples of how CDK/cyclins: (1) regulate the asymmetric localization and timely destruction of cell fate determinants; (2) couple signaling to the control of cell division orientation; and (3) maintain mitotic zones for stem cell proliferation. These studies illustrate how the core cell cycle machinery should be viewed not merely as an engine that drives the cell cycle forward, but rather as a dynamic regulator that integrates the cell-division cycle with cellular differentiation, ensuring the coherent and faithful execution of developmental programs.  相似文献   

18.
Progression through the cell cycle in eukaryotic cells is controlled by a family of protein kinases, termed cyclin-dependent kinases (CDKs), and their specific partners, the cyclins. In particular, the control of mammalian cell proliferation occurs largely during the G1 phase of the cell cycle. Five mammalian G1 cyclins have been enumerated to date: cyclins D1, D2, and D3 (D-type cyclins), and cyclins E and E2. By the use of immunohistochemistry and immunoelectron microscopy, we observed that in the first trimester of gestation of human placenta, cyclin D1 was distributed in the nuclei of the cytotrophoblast compartment together with a weak positivity of endothelial cells surrounding blood vessels. The endothelial positivity of cyclin D1 strongly increased in the third trimester of gestation. Moreover, we observed the subcellular localization of cyclin D1 that was present both in the stroma of placental villi and in the nuclei of syncytiotrophoblast cells. Therefore, we observed that CDK4 was localized in the nuclei of the cytotrophoblast compartment during the first and third trimesters and it also had a nuclear positivity in the endothelial cells of blood vessels at the end of the third trimester of gestation. In conclusion we may hypothesize that cyclin D1/CDK4 complex functions to regulate the cell cycle progression in the proliferative compartment of human placenta, the cytotrophoblast, during the first trimester through interaction with p107 and p130. Therefore, cyclin D1 and CDK4 seem to be involved in the control of placental angiogenesis during the third trimester of gestation.This work was supported by the University of Naples Federico II (M.D.F., V.F. and V.L.), by the Second University of Naples (L.C. and A.D.L.) and I.S.S.C.O. (President H.E. Kaiser)  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号