首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electron attachment rates and gas phase acidities for the canonical tautomers of the nucleobases and electron affinities for thymine, deprotonated thymine, and cytosine are reported The latter are from a new analysis of published photoelectron spectra. The values for deprotonated thymine are (all in eV) keto-N1-H, 3.327(5); enol-N3-H, 3.250(5), enol-C2OH, 3.120(5) enol-N1-H, 3.013(5), and enol-C4OH,3.123(5). The values for deprotonated cytosine, keto-N1-H, 3.184(5); trans-NH-H, 3.008(5); cis-NH-H, 3.039(5); and enol-N1-H, 2.750(5) and enol-O-H, 2.950(5). The gas phase acidities from these values are obtained from these values using experimental or theoretical calculations of bond dissociation energies. Kinetic and thermodynamic properties for thermal electron attachment to thymine are obtained from mass spectrometric data. We report an activation energy of 0.60 eV and electron affinity of thymine, 1.0(1) eV.  相似文献   

2.
Diamond-anvil cell, pressure-tuning infrared (IR), and Raman microspectroscopic measurements have been undertaken to examine the effects of high pressures up to about 45?kbar on the vibrational spectra of the four DNA bases, adenine, cytosine, guanine, and thymine. Small structural changes were evident for all the four bases, viz., for adenine and cytosine at 28–31?kbar; for guanine at 16–19?kbar; and for thymine at 25–26?kbar. These changes are most likely associated with alterations in the intermolecular hydrogen-bonding interactions. The pressure dependences of the main peaks observed in the IR spectra of the two phases of guanine lie in the ?0.07–0.66 (low-pressure phase) and 0.06–0.91 (high-pressure phase) cm?1/kbar ranges. Also, in the Raman spectra of this nucleoside base, the dν/dP values range from ?0.07–0.31 (low-pressure phase) to 0.08–0.50 (high-pressure phase) cm?1/kbar. Similar ranges of dν/dP values were obtained for the other three nucleoside bases.  相似文献   

3.
In recent years, there has been increasing interest in damaged DNA and RNA nucleobases. These damaged nucleobases can cause DNA mutation, resulting in various diseases such as cancer. Alkylating agents are mutagenic and carcinogenic in a variety of prokaryotic and eukaryotic organisms. The present study employs density functional theory (DFT/B3LYP) with the 6-311++G(d,p) basis set to investigate the effect of chemical damage in O-alkyl pyrimidines such as O4-methylthymine, O2-methylcytosine and O2-methylthymine. We compared the intrinsic properties, such as proton affinities, gas phase acidities, equilibrium tautomerization and nucleobase pair’s hydrogen bonding properties, of these molecules with those in the normal nucleobases thymine and cytosine. The results are of interest for chemical reasons and also possibly for biological purposes since biological media can be quite non-polar. Furthermore, we found that N1-H of O4-methylthymine is less acidic than N1-H of thymine, suggesting that alkyl DNA glycosylase enzyme cannot discriminate this damaged nucleobase from a normal thymine nucleobase. This result indicates that the conjugated base anion of O4-methylthymine would be a worse leaving group and O4-methylthymine is repaired in genome by demethylation rather than enzyme-catalyzed excision at N1.  相似文献   

4.
During DNA replication, mutations occur when an incorrect dNTP is incorporated opposite a carcinogen-modified nucleotide. We have probed the structures of the interaction between O 6-methylguanine ( O 6mG) and cytosine and thymine during replication by kinetic means in order to examine the structure during the rate determining step. The kinetics of incorporation of dCTP and dTTP opposite O 6mG and three analogs, S 6-methyl-6-thioguanine, O 6-methyl-1-deazaguanine and O 6-methylhypoxanthine, have been measured with four polymerases, the Klenow fragment of DNA polymerase I, the Klenow fragment with the proof-reading exonuclease inactivated, Taq and Tth polymerases. In the insertion of dTTP opposite O 6mG, a large decrease in V max/ K m was observed only upon modification of the N1 position. This result is consistent with a Watson-Crick type configuration. For the incorporation of dCTP, the V max/ K m was significantly decreased only with removal of the exocyclic amino group at the 2 position. The pH dependence of the ratio of incorporation of dCTP and dTTP was independent of pH at physiological pH. This result suggests that dCTP is incorporated via an uncharged complex such as the wobble configuration.  相似文献   

5.
Aqueous solution of thymine (5 X 10(-4) M, buffered at pH 7.0) was irradiated with 60Co gamma-rays under four different atmospheric conditions. In the presence of t-BuOH-N2, there was little increase in the fluorescence intensity as was previously reported in the radiolysis of cytosine. Under O2 there was also no significant increase differing from the case of cytosine. The fluorescence intensity was found to increase appreciably under N2O but it was less under N2 indicating that OH radical is mainly responsible for the formation of the highly fluorescent products. However, the fluorescence yields under these conditions were much lower in thymine radiolysis than cytosine radiolysis.  相似文献   

6.
The hydrolytic deamination of cytosine and 5-methylcytosine drives many of the transition mutations observed in human cancer. The deamination-induced mutagenic intermediates include either uracil or thymine adducts mispaired with guanine. While a substantial array of methods exist to measure other types of DNA adducts, the cytosine deamination adducts pose unusual analytical problems, and adequate methods to measure them have not yet been developed. We describe here a novel hybrid thymine DNA glycosylase (TDG) that is comprised of a 29-amino acid sequence from human TDG linked to the catalytic domain of a thymine glycosylase found in an archaeal thermophilic bacterium. Using defined-sequence oligonucleotides, we show that hybrid TDG has robust mispair-selective activity against deaminated U:G and T:G mispairs. We have further developed a method for separating glycosylase-released free bases from oligonucleotides and DNA followed by GC–MS/MS quantification. Using this approach, we have measured for the first time the levels of total uracil, U:G, and T:G pairs in calf thymus DNA. The method presented here will allow the measurement of the formation, persistence, and repair of a biologically important class of deaminated cytosine adducts.  相似文献   

7.
Base pairs are propeller-twisted, buckled and staggered in DNA fragment crystals. These deformations were analyzed with isolated Watson-Crick base pairs using empirical potentials and buckle was found to almost linearly correlate with propeller. Interestingly, the thymine.adenine pair favours negative buckling for propellers mostly observed in DNA crystals while positive buckling is preferred by the cytosine.guanine pair. The propeller also induces opposite staggers in the adenine.thymine and guanine.cytosine base pairs.  相似文献   

8.
Uracil-DNA glycosylase (UDG) protects the genome by removing mutagenic uracil residues resulting from deamination of cytosine. Uracil binds in a rigid pocket at the base of the DNA-binding groove of human UDG and the specificity for uracil over the structurally related DNA bases thymine and cytosine is conferred by shape complementarity, as well as by main chain and Asn204 side chain hydrogen bonds. Here we show that replacement of Asn204 by Asp or Tyr147 by Ala, Cys or Ser results in enzymes that have cytosine-DNA glycosylase (CDG) activity or thymine-DNA glycosylase (TDG) activity, respectively. CDG and the TDG all retain some UDG activity. CDG and TDG have kcat values in the same range as typical multisubstrate-DNA glycosylases, that is at least three orders of magnitude lower than that of the highly selective and efficient wild-type UDG. Expression of CDG or TDG in Escherichia coli causes 4- to 100-fold increases in the yield of rifampicin-resistant mutants. Thus, single amino acid substitutions in UDG result in less selective DNA glycosylases that release normal pyrimidines and confer a mutator phenotype upon the cell. Three of the four new pyrimidine-DNA glycosylases resulted from single nucleotide substitutions, events that may also happen in vivo.  相似文献   

9.
Oxidative damage in DNA. Lack of mutagenicity by thymine glycol lesions   总被引:10,自引:0,他引:10  
Thymine glycol (5,6-dihydroxy-5,6-dihydrothymine) is a base damage common to oxidative mutagens and the major stable radiolysis product of thymine in DNA. We assessed the mutagenic potential of thymine glycols in single-stranded bacteriophage DNA during transfection of Escherichia coli wild-type and umuC strains. cis-Thymine glycols were induced in DNA by reaction with the chemical oxidant, osmium tetroxide (OsO4); modification of thymines was quantitated by using anti-thymine glycol antibody. Inactivation of transfecting molecules showed that one lethal hit corresponded to 1.5 to 2.1 thymine glycols per phage DNA in normal cells, whereas conditions of W-reactivation (SOS induction) reversed 60 to 80% of inactivating events. Forward mutations in the lacI and lacZ' (alpha) genes of f1 and M13 hybrid phage DNAs were induced in OsO4-treated DNA in a dose-dependent manner, in both wild-type and umuC cells. Sequence analysis of hybrid phage mutants revealed that mutations occurred preferentially at cytosine sites rather than thymine sites, indicating that thymine glycols were not the principal pre-mutagenic lesions in the single-stranded DNA. A mutagenic specificity for C----T transitions was confirmed by OsO4-induced reversion of mutant lac phage. Pathways for mutagenesis at derivatives of oxidized cytosine are discussed.  相似文献   

10.
The secondary structure of the alternating polydeoxynucleotide sequence poly[d(C-T)] was studied as a function of pH by ultraviolet absorbance and circular dichroism spectroscopy and by the analysis of UV-induced photoproducts. As the pH was lowered, poly[d(C-T)] underwent a conformational transition that was characterized by changes in the long-wavelength region (280-320 nm) of the CD spectrum. These changes have previously been interpreted as evidence for the formation of a core of stacked, protonated C X C+ base pairs in a double-helical complex of poly[d(C-T)], with the thymidyl residues being looped out into the solvent [Gray, D. M., Vaughan, M., Ratliff, R. L., & Hayes, F. N. (1980) Nucleic Acids Res. 8, 3695-3707]. In the present work, poly[d(C-T)] was labeled with [U-14C]cytosine and [methyl-3H]thymine and irradiated at pH values both above and below the conformational transition point (monitored by CD spectroscopy). The distribution of radioactivity in uracil means value of uracil dimers, uracil means value of thymine dimers (the deamination products of cytosine means value of cytosine and cytosine means value of thymine dimers, respectively), and thymine-means value of thymine dimers was then determined. As the pH was decreased, we found an increase in the yield of uracil means value of uracil dimers and a decrease in the yield of uracil means value of thymine dimers, which occurred concomitantly with the change in the CD spectrum.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Sodium bisulfite reacts with cytosine and 5-methylcytosine, forming the 5,6-dihydrosulfonate adducts which deaminate to the uracil and thymine adducts, respectively. At alkaline pH, the sulfonate groups are then released, generating uracil and thymine. In DNA, the resulting G:U and G:T base mismatches generated are potential sites of mutagenesis. Using a human damage-specific DNA binding protein as a probe, we have found protein-recognizable lesions in bisulfite-treated DNA and poly d(I-C), but not in treated poly d(A-T) or poly d(A-U). Although this suggests that the lesion recognized is cytosine-derived, there was no correlation between the number of uracils induced and the number of binding sites, suggesting that the protein-bound damage is not a uracil-containing mismatch. Modification of the treatment protocol to reduce elimination of the bisulfite from the base adducts increased the level of binding, suggesting that the protein recognizes a base-sulfonate adduct.  相似文献   

12.
We have demonstrated that aromatic heterocycles having hydrogen-bonding surfaces complementary to those of nucleotide bases are effective molecular elements for the binding to single nucleotide bulges and base mismatches. We here report that a new molecule, 2-ureidoquinoline having an alignment of hydrogen-bonding groups in the order of acceptor-donor-donor stabilizes single cytosine and thymine bulges in duplex DNAs. Furthermore, a dimeric form of 2-ureidoquinoline stabilizes cytosine-cytosine and cytosine-thymine mismatches.  相似文献   

13.
The loop of four thymines in the sodium form of the dimeric folded quadruplex [d(G3T4G3)]2 assumes a well-defined structure in which hydrogen bonding between the thymine bases appears to contribute to the stability and final conformation of the quadruplex. We have investigated the importance of the loop interactions by systematically replacing each thymine in the loop with a cytosine. The quadruplexes formed by d(G3CT3G3), d(G3TCT2G3), d(G3T2CTG3) and d(G3T3CG3) in the presence of 150 mM Na+ were studied by gel mobility, circular dichroism and 1H NMR spectroscopy. The major species formed by d(G3CT3G3), d(G3TCT2G3) and d(G3T3CG3) at 1 mM strand concentration at neutral pH is a dimeric folded quadruplex. d(G3T2CTG3) has anomalous behaviour and associates into a greater percentage of linear four-stranded quadruplex than the other three oligonucleotides at neutral pH and at the same concentration. The linear four-stranded quadruplex has a greater tendency to oligomerize to larger ill-defined structures, as demonstrated by broad 1H NMR resonances. At pH 4, when the cytosine is protonated, there is a greater tendency for each of the oligonucleotides to form some four-stranded linear quadruplex, except for d(G3T2CTG3), which has the reverse tendency. The experimental results are discussed in terms of hydrogen bonding within the thymine loop.  相似文献   

14.
It was found that nonenzymatic DNA methylation proceeds in water solution in the presence of S-adenosylmethionine (AdoMet). The main reaction products are thymine and 5-methylcytosine residues. It was shown that labelled thymine residues are formed also upon DNA incubation in the presence of [methyl-14C]methionine as well as [methyl-14C]cobalamine. Only cytosine reacts with AdoMet resulting in thymine production. AdoMet may be a potential mutagen that induces GC----AT transitions during DNA replication in the cell.  相似文献   

15.
Alternative metabolic fates of thymine nucleotides in human cells.   总被引:1,自引:1,他引:0       下载免费PDF全文
Three types of experiments have been used to study the metabolism of thymine nucleotides by human cells. (1) Cells were labelled continuously with [3H]thymidine and the incorporation of label into DNA compared with the specific radioactivities of pools of individual thymine nucleotides separated by chromatography on polyethylene-imine-cellulose. (2) Cellular thymine nucleotides were labelled with [3H]thymidine at 13 degrees C, followed by incubation at 37 degrees C in unlabelled medium. Incorporation of label into DNA and loss of label from the nucleotide pools were monitored during the 'chase' period at 37 degrees C. (3) The experiments described in (2) above were repeated in the presence of the DNA-synthesis inhibitor cytosine arabinoside, in order to demonstrate more clearly and to quantify degradative pathways for thymine nucleotides. In phytohaemagglutinin-stimulated lymphocytes and in bone-marrow cells, only a proportion (25-60%) of labelled thymine nucleotide was incorporated into DNA, the rest being rapidly degraded and lost from the cell. In contrast, an established cell line (HPB-ALL) from a patient with acute lymphoblastic leukaemia of thymic origin incorporated 100% of its exogenously labelled thymine nucleotides into DNA. These results indicated that alternative metabolic routes are open to thymine nucleotides in human cells. In lymphocytes from patients with megaloblastic anaemia and in normal lymphocytes treated with methotrexate, the utilization of labelled thymine nucleotides for DNA synthesis was more efficient than in controls. These results offer an explanation for the observation of a normal pool of thymidine triphosphate in the cells of patients with untreated megaloblastic anaemia even though the amount of this compound available for DNA synthesis appears to be decreased.  相似文献   

16.
Liquid chromatography was used to follow the degradation of hexopyranosylated cytosine nucleosides in buffers of acid, neutral and alkaline pH and of constant ionic strength. The compounds were found to degrade by hydrolysis to cytosine and/or by deamination to the corresponding uracil nucleosides. Degradation in acid is influenced by the number of sugar hydroxyl groups, presence of sugar double bonds and the type of anomer. Stability of some of the compounds was compared with that of related thymine nucleosides. Temperature studies support a unimolecular mechanism of hydrolysis at pH 1.22.  相似文献   

17.
A A Shaw  A M Falick  M D Shetlar 《Biochemistry》1992,31(45):10976-10983
We report here the photoinduced formation of a thymine-N-acetyltyrosine adduct. Irradiation of dilute solutions of thymine in the presence of N-acetyltyrosine (NAT) leads to the formation of N-acetyl-4-hydroxy-3-(6-hydrothymin-5-yl)phenylalanine (I), isolated as a mixture of the 5R and 5S diastereoisomers; the photoreaction occurs when irradiation is done either at lambda = 254 nm or at wavelengths of lambda > 290 nm. Irradiation of thymidine in the presence of NAT and of thymine in the presence of tyrosine leads to analogous photoadducts. The photoreaction of thymine with NAT is completely quenched by oxygen and cannot be sensitized by acetone. The likely mechanism involves initial photoionization of the amino acid and deprotonation to form the phenoxyl radical. Thymine then probably captures the released aqueous electron, leading to protonation at C6 of the resulting radical anion. Combination of the phenoxyl and 5,6-dihydrothymin-5-yl radicals would then lead to formation of the final products. The quantum yield for production of the thymine-NAT adduct at pH 7.8 was estimated to be about 5.5 x 10(-4), while a value of 2.3 x 10(-3) was estimated for production of corresponding thymidine adduct at pH 8.1. The dependence of the quantum yield for adduct formation on pH has been determined for both the thymine and thymidine reactions with NAT; the maxima in the quantum yield profiles occur at pH 8-8.5, while appreciable values were measured at pH 7.5. We have also demonstrated that a similar reaction occurs when tyrosine is located within a peptide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
In Escherichia coli and human cells, many sites of cytosine methylation in DNA are hot spots for C to T mutations. It is generally believed that T.G mismatches created by the hydrolytic deamination of 5-methylcytosines (5meC) are intermediates in the mutagenic pathway. A number of hypotheses have been proposed regarding the source of the mispaired thymine and how the cells deal with the mispairs. We have constructed a genetic reversion assay that utilizes a gene on a mini-F to compare the frequency of occurrence of C to T mutations in different genetic backgrounds in exponentially growing E. coli. The results identify at least two causes for the hot spot at a 5meC: (1) the higher rate of deamination of 5meC compared to C generates more T.G than uracil.G (U.G) mismatches, and (2) inefficient repair of T.G mismatches by the very short-patch (VSP) repair system compared to the repair of U. G mismatches by the uracil-DNA glycosylase (Ung). This combination of increased DNA damage when the cytosines are methylated coupled with the relative inefficiency in the post-replicative repair of T.G mismatches can be quantitatively modeled to explain the occurrence of the hot spot at 5meC. This model has implications for mutational hot and cold spots in all organisms.  相似文献   

19.
Escherichia coli mutants which secreted thymidine, thymine, uracil, cytosine, and guanine into the culture medium were isolated. The isolation strategy was based on the combination of a sensitive screening method and a mutant-generating system. The screening method made use of a thyA mutant of E. coli. These cells, when spread on the agar surface with the 3-galactosidase indicator X-gal, will grow into bule colonies if a minute amount of thymidine is supplied to them from a nearby secretor colony. A chemostat was used as a mutant-generating system to select for E. coli mutants that were resistant to inhibitors of the pyrimidine biosynthetic pathway. Although many mutants were selected based on their secretion of thymidine, other kinds of nucleosides and nucleobases, such as cytosine, uracil, guanine, and thymine, were also present in larger quantities. This rational selection strategy should be applicable to other species of micro-organisms for the isolation of better producers of nucleosides. The production of nucleosides and nucleobases by fermentation could then become a possibility.  相似文献   

20.
Uracil-DNA glycosylase, which acts specifically on uracil-containing DNA, was purified 250-fold from an extract of Escherichia coli 1100. The enzyme releases free uracil from DNA, producing alkali-labile apyrimidinic sites in the DNA. The enzyme is active on both native and heat-denatured DNA of phage PBS1, which contains uracil in place of thymine. piX174 DNA which had been treated with bisulfite and then at alkaline pH was susceptible to the action of uracil-DNA glycosylase. Since DNA treated with bisulfite alone was less susceptible to the enzyme, it is likely that the enzyme recognizes deaminated cytosine, namely uracil, but not bisulfite adducts of uracil and cytosine in the treated DNA. DNA treated with nitrite or hydroxylamine was not attacked by the enzyme. Enzyme activity acting on bisulfite-treated DNA was absent from an extract of E. coli mutant BD10 (ung). The mutant exhibited higher sensitivity to bisulfite than did the wild-type strain and was unable to reactivate phage T1 pre-exposed to bisulfite and weak alkali.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号