首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Elevated levels of metallothionein (MT)-I and -II were identified in the liver and kidney of insulin-deficient diabetic rats. 2. The relative rate of MT synthesis and the turnover of cytoplasmic MT were both accelerated in the liver of diabetic rats. 3. The rate of synthesis of MT, but not its cytoplasmic turnover, was increased in diabetic kidney. 4. Maximal relative rates of MT synthesis in liver and kidney were first observed at 4 and 10 days, respectively, after inducing the diabetic condition. 5. The altered metabolism of hepatic MT in diabetic rats was attributed primarily to disturbances in endocrine status, while the altered metabolism of renal MT was largely due to accumulation of excessive dietary copper in the kidney.  相似文献   

2.
The concentrations of copper, zinc and metallothionein-I (MT-I) mRNA were determined in the liver, kidney and brain of the brindled mutant mouse from birth until the time of death. Despite accumulation of copper in the kidney of the mutant, MT-I mRNA concentrations were normal. There was no difference between the MT-I mRNA in the brain of mutant and normal in the first 10 days of life, but after day 10 metallothionein mRNA levels were increased in the mutant. The concentration of copper was very low in the liver of the mutant, and on day 6 after birth the metallothionein mRNA was also reduced by about 50%. This reduction was not seen in copper-deficient 6-day-old pups, despite very low hepatic copper levels. This suggests that the lower hepatic MT-I mRNA in the day 6 brindled mouse was not simply due to the reduction in hepatic copper and also that hepatic copper is not regulating metallothionein gene expression the liver of neonatal mice. After day 12 hepatic MT-I mRNA levels were elevated in mutant and in copper deficient mice, both of which die at 14 to 16 days. These increases and the increase in brain MT-I mRNA in older mutant mice are likely to be caused by stress. Overall the results support the conclusions that the brindled mutation does not cause a constitutive activation of the metallothionein genes, and that the differences in metallothionein mRNA between mutant and normal are most probably secondary consequences of the mutation.  相似文献   

3.
The concentrations of copper, zinc and metallothionein-I (MT-I) mRNA were determined in the liver, kidney and brain of the brindled mutant mouse from birth until the time of death. Despite accumulation of copper in the kidney of the mutant, MT-I mRNA concentrations were normal. There was no difference between the MT-I mRNA in the brain of mutant and normal in the first 10 days of life, but after day 10 metallothionein mRNA levels were increased in the mutant. The concentration of copper was very low in the liver of the mutant, and on day 6 after birth the metallothionein mRNA was also reduced by about 50%. This reduction was not seen in copper-deficient 6-day-old pups, despite very low hepatic copper levels. This suggests that the lower hepatic MT-I mRNA in the day 6 brindled mouse was not simply due to the reduction in hepatic copper and also that hepatic copper is not regulating metallothionein gene expression the liver of neonatal mice. After day 12 hepatic MT-I mRNA levels were elevated in mutant and in copper deficient mice, both of which die at 14 to 16 days. These increases and the increase in brain MT-I mRNA in older mutant mice are likely to be caused by stress. Overall the results support the conclusions that the brindled mutation does not cause a constitutive activation of the metallothionein genes, and that the differences in metallothionein mRNA between mutant and normal are most probably secondary consequences of the mutation.  相似文献   

4.
D. M. Hunt  R. Clarke 《Biochemical genetics》1983,21(11-12):1175-1194
Copper accumulates in kidney tissue of mottled (Mo) mice largely in association with a low MW cytosol protein, and the reduced copper levels in neonatal mutant liver are largely the result of a reduction in the amount of copper associated with this same protein. On the basis of ion-exchange chromatographic profile, heat stability, absence of a 280nm absorption peak, and the binding of Cd109 and Zn65 the protein mutants in the kidney is identified as metallothionein (MT). Amino acid analysis, however, failed to confirm this, and it is suggested that the high copper content of the mutant protein results in its oxidative degradation during purification, even when normal anaerobic precautions are taken. Estimates of thionein protein content of tissues from mutant and normal mice demonstrated that the levels are significantly elevated in both young and adult mutant kidney and depressed in young mutant liver, in parallel therefore with the changes in tissue copper levels. In adult mutant liver tissue, however, thionein levels are significantly raised, even though tissue copper content is normal. The synthesis and degradation of MT was examined in some detail. Incorporation of S35-cysteine in kidney MT was significantly raised in both young and adult mutant mice, while in adult tissue the rate of degradation of MT was significantly depressed. The elevated kidney MT levels arise therefore in young mutant mice from an increased rate of synthesis and in adult mice from the combined effects of increased synthesis and reduced degradation.  相似文献   

5.
Toxic milk mice have an inherited defect of copper metabolism. Hepatic phenotype of the toxic milk mice is similar to clinical findings in humans suffering from Wilson’s disease (WND). In the present study, neurotransmitter system and locomotor performance in toxic milk mice was examined to verify the feasibility of this animal model for studying neuropathology of WND. Mice aged 2 and 12 months were used in the experiment. The mice were tested according to rotarod and footprint protocols. Monoamine content in brain structures was measured by high performance liquid chromatography. In order to detect neuronal loss, expression of enzymes specific for dopaminergic [tyrosine hydroxylase (TH)], noradrenergic (dopamine beta-hydroxylase) and serotoninergic [tryptophan hydroxylase (TPH)] neurons was analyzed by Western blot. The 12-month-old toxic milk mice demonstrated impaired locomotor performance in behavioral tests. Motor deficits were accompanied by increased copper and serotonin content in different brain regions and slight decrease in dopamine concentration in the striatum. The expression of TH, dopamine beta-hydroxylase and TPH in the various brain structures did not differ between toxic milk mice and control animals. Despite differences in brain pathology between humans and rodents, further exploration of neuronal injury in toxic milk mice is warranted to broaden the understanding of neuropathology in WND.  相似文献   

6.
Little is known about copper metabolism at the cellular level. The brindled mouse is an animal model of Menkes disease which is an inborn error of copper metabolism. Control and brindled mice were used to identify copper-binding proteins with possible roles in normal copper metabolism that are affected by the defect in the brindled mice. When 64Cu-labeled hepatic or renal cytosols from control mice were applied to Mono Q or Superose columns, a approximately 48-kDa protein coeluted with the protein fractions which contained the radiolabeled copper. Large decreases in copper binding were detected in these fractions from the brindled mice. The same column fractions which showed decreased copper binding showed large decreases in the levels of the approximately 48-kDa protein. Decreased copper binding and approximately 48-kDa protein were not simply secondary to the abnormal hepatic and renal copper levels that are found in the brindled mice since although their liver copper levels are low, their kidney copper levels are high. Elevated levels of an approximately 80-kDa heat shock protein were also detected in the hepatic and renal cytosols from the brindled mice. Consistent with expression of the primary defect in both the liver and kidney, the levels of the approximately 48- and approximately 80-kDa proteins were affected similarly in both organs. Irrespective of how the low levels of the approximately 48-kDa protein may be related to the basic defect in the brindled mice, the data are consistent with an important role for the approximately 48-kDa protein in intracellular copper metabolism.  相似文献   

7.
The tissues of willow ptarmigan in some Norwegian mountain areas contain elevated concentrations of cadmium (Cd). It is not known whether such high Cd levels would have negative impacts in otherwise healthy populations of this species. The aim of the current study was to clarify relationships between hepatic and renal metallothionein (MT) and Cd concentrations in willow ptarmigan to assess effects from this metal. The study reported here was undertaken on willow ptarmigan from the Kongsvoll area, with a naturally high Cd load, and the Essand area, with a naturally low Cd load. Cd values in liver and kidney in willow ptarmigan from Kongsvoll were significantly higher than in willow ptarmigan from Essand. The MT content in both tissues was also highest in willow ptarmigan from Kongsvoll. The MT concentration in kidney was twice that in liver for ptarmigan from both areas and at all times of the year. The MT level in both liver and kidney varied greatly throughout the season, with the highest content in spring (May). The variation was greatest in liver. The total material showed a significant linear relationship between Cd and MT levels in both liver and kidney, but a breakdown of the material into seasons and areas gave a varying degree of significance. MT in willow ptarmigan may be an important mechanism for detoxifying Cd, and populations exposed to high load may “respond” to the loads by increasing MT synthesis in tissues such as liver and kidney. There is no evidence that willow ptarmigan from areas with high natural Cd loads have reached a limit for MT synthesis in either liver or kidney.  相似文献   

8.
9.
10.
The toxic milk (tx) mouse is a rodent model for Wilson disease, an inherited disorder of copper overload. Here we assessed the effect of copper accumulation in the tx mouse on zinc and iron metabolism. Copper, zinc and iron concentrations were determined in the liver, kidney, spleen and brain of control and copper-loaded animals by atomic absorption spectroscopy. Copper concentration increased dramatically in the liver, and was also significantly higher in the spleen, kidney and brain of control tx mice in the first few months of life compared with normal DL mice. Hepatic zinc was increased with age in the tx mouse, but zinc concentrations in the other organs were normal. Liver and kidney iron concentrations were significantly lower at birth in tx mice, but increased quickly to be comparable with control mice by 2 months of age. Iron concentration in the spleen was significantly higher in tx mice, but was lower in 5 day old tx pups. Copper-loading studies showed that normal DL mice ingesting 300 mg/l copper in their diet for 3 months maintained normal liver, kidney and brain copper, zinc and iron levels. Copper-loading of tx mice did not increase the already high liver copper concentrations, but spleen and brain copper concentrations were increased. Despite a significant elevation of copper in the brain of the copper-loaded tx mice no behavioural changes were observed. The livers of copper-loaded tx mice had a lower zinc concentration than control tx mice, whilst the kidney had double the concentration of iron suggesting that there was increased erythrocyte hemolysis in the copper-loaded mutants.  相似文献   

11.
The influence of dietary iron deficiency on acute nickel, lead or cadmium toxicity as reflected by the induction of hepatic, renal and intestinal metallothionein (MT), disposition of the metals, and alterations in hematological parameters was investigated in rats. The administration of cadmium induced the hepatic, renal and intestinal MT while that of nickel or lead induced hepatic MT only. However, dietary iron deficiency did not influence the cadmium induced tissue MT but enhanced the ability of nickel or lead to restore the normal synthesis of renal and intestinal MT lowered under the influence of reduced body iron status. The accumulation of lead in liver and kidney and that of cadmium enhanced in liver only, while tissue deposition of nickel remained unaffected by iron deficiency. The induction of hepatic MT by three metals appears related to the concomitant rise in the hepatic zinc, calcium and iron levels in normal rats. However, dietary iron deficiency increased the hepatic zinc in response to nickel or cadmium and that of heptic calcium in response to lead.  相似文献   

12.
Wilson disease (WND) is an autosomal recessive disorder that is due to an inability of the liver to eliminate copper. Copper buildup in the liver, brain, kidney, and other tissues can result in liver cirrhosis, neurologic and psychiatric defects, and other problems. We have localized the disease-containing region to between D13S31 and D13S59, with > 70 multiply affected families, and have constructed a YAC contig of > 4.5 Mb that spans these loci and orders nine highly polymorphic microsatellites. Here we present an analysis of disequilibrium with markers in this interval and provide evidence for strong allelic associations between AFM084xc5 alleles and WND alleles in European, Middle Eastern, and East Asian populations. Significant but weaker allelic associations were also observed between WND alleles and alleles at D13S137 and D13S169. The strength of the association between AFM084xc5 and WND in all non-Sardinian populations combined (linkage-disequilibrium coefficient [phi] = .61) suggests that the number of mutations accounting for WND is less than expected on the basis of the variety of clinical symptoms that are observed.  相似文献   

13.
The levels of metallothionein (MT), a biomarker of metal exposure, and of cytosolic metals (Zn, Cu, Cd), known as MT inducers, were investigated as variables of age (1 to 8 years) and tissue mass (liver, kidney, brain) of red mullet (Mullus barbatus). Within the age from 1 to 8 years the most significant increase is evident for cytosolic Cd in liver (43-fold) and in kidney (5-fold). MT and essential metals are constant with age or slightly increased. Over the growth period, statistically significant MT and metal increase is evident only between 1 and 6-8 years old specimens, while for Cd in liver and kidney cytosol significant increase already exists at 4 years old specimens. Metal distribution in all tissues follows the order: Zn>Cu>Cd, with even 500-800 times lower Cd levels than essential metal levels. Consequently, MTs follow the levels of essential metals, Zn and Cu, indicating MT involvement in homeostasis of essential metals. In contrast to kidney and brain, hepatic MT levels are not age-dependent. Inclusion of hepatic MT measurements and the associated cytosolic metals will be useful in the assessment of long-term metal effects in demersal fish M. barbatus.  相似文献   

14.
15.
Wilson disease (WND), an autosomal recessive disorder of copper transport with a broad range of genotypic and phenotypic characteristics, results from mutations in the ATP7B gene. ATP7B encodes a copper transporting P-type ATPase involved in the transport of copper into the plasma protein ceruloplasmin, and for excretion of copper from the liver. Defects in ATP7B lead to copper storage in liver, brain and kidney. Mutation analysis was carried out on 300 WND patients of various origins, and new mutations not previously reported were identified: European white (p.L217X, c.918_931, c.1073delG, c.3082_3085delAAGAinsCG, p.V536A, p.S657R, p.A971V, p.T974M, p.Q1004P, p.D1164N, p.E1173G, p.I1230V, p.M1359I, c.2355+4A>G), Sephardic Jewish (p.Q286X), Filipino (p.G1149A), Lebanese (p.R1228T), Japanese (p.D1267V) and Taiwanese (p.A1328T). All but one missense variant have strong evidence for classification as disease-causing mutations. In the patients reported here, we also identified 20 nucleotide substitutions, six not previously reported, which cause silent amino acid changes or intronic changes. Documentation and characterization of all variants is essential for accurate DNA diagnosis in WND because of the wide range of clinical and biochemical variability.  相似文献   

16.
Samples of liver, renal cortex, and medulla were obtained from 55 forensic autopsies (0- to 95-yr-old Japanese). Metallothionein (MT) was determined by the Ag-hem or Cd-hem method. Zinc (Zn), copper (Cu), and cadmium (Cd) were determined by atomic absorption spectrophotometry. The mean levels of MT were 250 μg/g in the liver, and 394 μg/g (cortex) and 191 μg/g (medulla) in the kidney. Age-dependent changes were observed in both the liver and kidney. In the liver, MT level decreased during infancy and increased thereafter with age. Similar age-dependent changes in the levels of Zn and Cu were observed. In the kidney cortex, MT level increased with age, although no correlation was found after middle age. The levels of Cd and Zn also increased with age until middle age; however, they decreased thereafter. These results suggest that age-dependent changes in renal MT levels are associated with accumulation of Cd.  相似文献   

17.
The abilities of the orally active platinum anti-tumor drug JM216 [trans-bis-acetato-cis-dichloroammine (cyclohexylamine) platinum (IV)] to induce the biosynthesis of metallothionein (MT) were investigated in rabbits given oral administrations or injections s. c. It is revealed that oral administration of JM216 can induce the MT synthesis in the liver but not in the kidney. The hepatic MT contained 7.11 ± 0.11 Zn and only little Pt or Cu. Injections of JM216 to rabbits can greatly elevate the MT levels in the liver, but increase the renal MT levels only slightly. The MT content as well as Pt concentration in the liver was much higher than that in the kidney. The metal stoichiometry in the purified renal MT was determined to be 4.41 ± 0.04 Zn, 0.36 ± 0.11 Pt and 2.50 ± 0.18 Cu per mole protein. The hepatic MT was still characterized as Zn7MT. Both the treatment with oral administration and injections s.c. cannot lead to the increase of Pt content in the kidney. The oxidation state of platinum in the MT from the kidney was determined to be +2 by X-ray photoelectron spectroscopy. As compared with zinc compounds, JM216 was a very poor stimulator for MT biosynthesis in vivo. Pre-injections with Zn(NO3)2 significantly enhanced the MT levels as well as the Pt concentration compared with that resulting from injections with JM216 alone. Based on the experimental data, the role of MT in relation to its involvement in the metabolism and the mechanism of detoxification of Pt(IV) complexes are discussed.  相似文献   

18.
The regulation of copper homeostasis in copper overloaded animals occurs by excretion of excess of the metal in bile and urine, which may be facilitated by metallothionein (MT) a copper binding protein. The role of MT in the mobilisation and excretion of copper excess has been studied in copper-loaded rats during the development of tolerance. Young male Wistar rats were fed a high copper (1 g/kg) diet for 16 weeks during which period they were killed after prior collection of bile, blood and urine for analysis for copper and immunoreactive MT-1. In addition bile was separated chromatographically and the eluant fractions were assessed likewise for copper and MT-1. Biliary excretion of copper and MT-1 rose to a maximum after 6 weeks, falling subsequently as the rats became copper tolerant. Early increases in circulating copper and MT-1 occurred likewise but whereas MT-1 fell subsequently during the recovery period, serum copper remained elevated. By contrast, urinary copper and MT-1 maintained an increased output throughout. Chromatographic separation of bile revealed the presence of a range of immunoreactive MT-1 degradation products. It was concluded that the close correspondence between bile and serum MT reflected their hepatic derivation and implicated liver MT as an export protein in the early stages of copper overload. By contrast, urine MT, maintained independently of circulating MT levels, established the active secretory participation of the kidney in promoting the continued depletion of excess copper.  相似文献   

19.
Previous studies have demonstrated marked alterations in trace metal metabolism in male Sprague-Dawley rats following chemical induction of the diabetic state. To determine whether such changes represented a general response to the insulin-deficient condition the levels of zinc, copper, and maganese in liver, kidney, and intestine of normal and streptozotocin (STZ)-diabetic male rats of the Sprague-Dawley, Wistar, and Long-Evans strains, female Sprague-Dawley rats, and male mice were measured. Significantly increased concentrations of zinc, copper, and maganese in liver, and zinc and copper in kidney were found in STZ-diabetic rats, regardless of sex and strain. In contrast, the zinc and copper contents in liver and kidney of control and STZ-diabetic mice were similar, but hepatic manganese levels were significantly elevated in both organs of the diabetic mouse. The concentrations of all three metals were similar in the intestine of control and diabetic rodents. Higher amounts of zinc and copper were bound to metallothionein in the liver and kidney of the diabetic rats. Nicotinamide injection prior to STZ administration protected rats against the development of diabetes and alterations in trace metal status. These data indicate that specific alterations in the metabolism of zinc, copper and manganese during episodes of pancreatic hormonal imbalance represent a general phenomenon in the rat. A possible explanation for the differential response of the STZ-diabetic mouse is discussed.  相似文献   

20.
Wilson’s disease carriers constitute 1% of the human population. It is unknown whether Wilson’s disease carriers are at increased susceptibility to copper overload when exposed to chronically high levels of ingested copper. This study investigated the effect of chronic excess copper in drinking water on the heterozygous form of the Wilson's disease mouse model – the toxic milk (tx) mouse. Mice were provided with drinking water containing 300 mg/l copper for 4–7, 8–11, 12–15 or 16–20 months. At the completion of the study liver, spleen, kidney and brain tissue were analyzed by atomic absorption spectroscopy to determine copper concentration. Plasma ceruloplasmin oxidase activity and liver histology were also assessed. Chronic copper loading resulted in significantly increased liver copper in both tx heterozygous and tx homozygous mice, while wild type mice were resistant to the effects of copper loading. Copper loading effects were greatest in tx homozygous mice, with increased extrahepatic copper deposition in spleen and kidney – an effect absent in heterozygote and wild type mice. Although liver histology in homozygous mice was markedly abnormal, no histological differences were noted between heterozygous and wild type mice with copper loading. Tx heterozygous mice have a reduced ability to excrete excess copper, indicating that half of the normal liver Atp7b copper transporter activity is insufficient to deal with large copper intakes. Our results suggest that Wilson’s disease carriers in the human population may be at increased risk of copper loading if chronically exposed to elevated copper in food or drinking water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号