首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The purpose of this study was to investigate the hypothesis that Na(+)-K(+)-ATPase activity is reduced in muscle of different fiber composition after a single session of aerobic exercise in rats. In one experiment, untrained female Sprague-Dawley rats (weight 275 +/- 21 g; means +/- SE; n = 30) were run (Run) on a treadmill at 21 m/min and 8% grade until fatigue, or to a maximum of 2 h, which served as control (Con), or performed an additional 45 min of low-intensity exercise at 10 m/min (Run+). In a second experiment, utilizing rats of similar characteristics (weight 258 +/- 18 g; n = 32), Run was followed by passive recovery (Rec). Directly after exercise, rats were anesthetized, and tissue was extracted from Soleus (Sol), red vastus lateralis (RV), white vastus lateralis (WV), and extensor digitorum longus (EDL) and frozen for later analysis. 3-O-methylfluorescein phosphatase activity (3-O-MFPase) was determined as an indicator of Na(+)-K(+)-ATPase activity, and glycogen depletion identified recruitment of each muscle during exercise. 3-O-MFPase was decreased (P < 0.05) at Run+ by an average of 12% from Con in all muscles (P < 0.05). No difference was found between Con and Run. Glycogen was lower (P < 0.05) by 65, 57, 44, and 33% (Sol, EDL, RV, and WV, respectively) at Run, and there was no further depletion during the continued low-intensity exercise period. No differences in Na(+)-K(+)-ATPase activity was observed between Con and Rec. The results of this study indicate that inactivation of Na(+)-K(+)-ATPase can be induced by aerobic exercise in a volume-dependent manner and that the inactivation that occurs is not specific to muscles of different fiber-type composition. Inactivation of Na(+)-K(+)-ATPase suggests intrinsic structural modifications by mechanisms that are unclear.  相似文献   

2.
Sphingomyelin liposomes and brain microsomes were oxidized by exposure to hydrogen peroxide and ferrous ion. Lipid peroxidation were measured by the formation of thiobarbituric acid- reactive substances (TBAR). Hydroxyl radical was detected using the spin- trapping technique. Incubation of sphingomyelin liposomes with H2O2-Fe2+ resulted in an increase in the formation of TBAR. Na(+)-K(+)-ATPase activity was markedly inhibited and the SH group content decreased during incubation of microsomes in the presence of H2O2-Fe2+. Sodium ferulate effectively inhibited TBAR formation, protected Na(+)-K(+)-ATPase activity and prevented the oxidative modification of SH groups. Spin-trapping experiments showed that sodium ferulate effectively scavenged the hydroxyl radicals.  相似文献   

3.
The activity of Na+/K(+)-ATPase and hemoglobin binding in membranes of rat erythrocytes during hypothermia (20 degrees C) was studied. Hypothermia causes an increase in hemoglobin binding and a decrease in Na+/K(+)-ATPase activity. It was found in in vitro experiments that the addition of hemoglobin to the membranes does not affect the Na+/K(+)-ATPase activity in control animals and decreases the activity of the enzyme in hypothermia.  相似文献   

4.
Na(+)-K(+)-ATPase pumps (Na(+) pumps) in the alveolar epithelium create a transepithelial Na(+) gradient crucial to keeping fluid from the pulmonary air space. We hypothesized that alveolar epithelial stretch stimulates Na(+) pump trafficking to the basolateral membrane (BLM) and, thereby, increases overall Na(+) pump activity. Alveolar type II cells were isolated from Sprague-Dawley rats and seeded onto elastic membranes coated with fibronectin or 5-day-conditioned extracellular matrix. After 2 days in culture, cells were uniformly stretched for 1 h in a custom-made device. Na(+) pump activity was subsequently assessed by ouabain-inhibitable uptake of (86)Rb(+), a K(+) tracer, and BLM Na(+) pump abundance was measured. In support of our hypothesis, cells increased Na(+) pump activity in a "dose-dependent" manner when stretched to 12, 25, or 37% change in surface area (DeltaSA), and cells stretched to 25% DeltaSA more than doubled Na(+) pump abundance in the BLM. Cells on 5-day matrix tolerated higher strain than cells on fibronectin before the onset of Na(+) pump upregulation. Treatment with Gd(3+), a stretch-activated channel blocker, amiloride, a Na(+) channel blocker, or both reduced but did not abolish stretch-induced effects. Sustained tonic stretch, unlike cyclic stretch, elicited no significant Na(+) pump response.  相似文献   

5.
Cultured rat cardiac myocytes and A7r5 cells were transfected with an adenoviral vector used earlier for in vivo expression of functional alpha(2)-isoform of the catalytic subunit of rat Na(+)-K(+)-ATPase. Expressions of truncated forms of alpha(2), but little or no intact alpha(2), were detected, suggesting the rapid degradation of alpha(2) in these cultured cells. In neonatal myocytes normally containing the alpha(1)- and the alpha(3)-isoforms, expression of the alpha(2)-fragment led to 1) a significant decrease in the level of endogenous alpha(1)-protein and a modest decrease in alpha(3)-protein, 2) decreases in mRNAs of alpha(1) and alpha(3), 3) decrease in Na(+)-K(+)-ATPase function measured as ouabain-sensitive Rb(+) uptake, 4) increase in intracellular Ca(2+) concentration similar to that induced by ouabain, and 5) eventual loss of cell viability. These findings indicate that the alpha(2)-fragment downregulates endogenous Na(+)-K(+)- ATPase most likely by dominant negative interference either with folding and/or assembly of the predominant housekeeping alpha(1)-isoform or with signal transducing function of the enzyme. Demonstration of rise in intracellular Ca(2+) resulting from alpha(1)-downregulation 1) does not support the previously suggested special roles of less abundant alpha(2)- and alpha(3)-isoforms in the regulation of cardiac Ca(2+), 2) lends indirect support to proposals that observed decrease in total Na(+)-K(+)-ATPase of the failing heart may be a mechanism to compensate for impaired cardiac contractility, and 3) suggests the potential therapeutic utility of dominant negative inhibition of Na(+)-K(+)-ATPase.  相似文献   

6.
The effects of high calcium diet on body weight in OC treated rats are unknown. This study therefore investigated the effect of increasing dietary calcium from 0.9% to 2.5% on body weight, food ingestion, water intake, heart weight index and renal weight index in female Sprague-Dawley rats treated with a combination of OC steroids (ethinyloestradiol + norgestrel). The rats were assigned into three groups of average of 11 rats each; control, OC-treated and OC + Calcium – treated groups and administered orally for 10 weeks. Food and water intake, body weight, cardiac weight index, left ventricular weight index, renal weight index and serum calcium level were determined. The result shows that OC treated rats had significantly lower serum calcium concentration, body weight gain, food, water and calcium intake than those of the control rats. The OC + Calcium – treated rat had significantly higher serum calcium concentration, food, water and calcium intake but significantly lower body weight than those of the OC - treated rats. OC + Calcium - treated rats had significantly higher water intake, calcium intake and significantly lower body weight and food intake when compared with the control rats. Cardiac weight index and renal weight index was comparable in all groups. In conclusion, combined OC-induced reduction in weight gain might be associated with inhibition of the feeding center and consequent inhibition of the thirst center. Co-administration of dietary calcium augmented the reduction in weight gain seen in OC-treated rats probably by further suppression of the feeding and thirst centers.  相似文献   

7.
This study investigated whether fatiguing dynamic exercise depresses maximal in vitro Na(+)-K(+)-ATPase activity and whether any depression is attenuated with chronic training. Eight untrained (UT), eight resistance-trained (RT), and eight endurance-trained (ET) subjects performed a quadriceps fatigue test, comprising 50 maximal isokinetic contractions (180 degrees /s, 0.5 Hz). Muscle biopsies (vastus lateralis) were taken before and immediately after exercise and were analyzed for maximal in vitro Na(+)-K(+)-ATPase (K(+)-stimulated 3-O-methylfluoroscein phosphatase) activity. Resting samples were analyzed for [(3)H]ouabain binding site content, which was 16.6 and 18.3% higher (P < 0.05) in ET than RT and UT, respectively (UT 311 +/- 41, RT 302 +/- 52, ET 357 +/- 29 pmol/g wet wt). 3-O-methylfluoroscein phosphatase activity was depressed at fatigue by -13.8 +/- 4.1% (P < 0.05), with no differences between groups (UT -13 +/- 4, RT -9 +/- 6, ET -22 +/- 6%). During incremental exercise, ET had a lower ratio of rise in plasma K(+) concentration to work than UT (P < 0.05) and tended (P = 0.09) to be lower than RT (UT 18.5 +/- 2.3, RT 16.2 +/- 2.2, ET 11.8 +/- 0.4 nmol. l(-1). J(-1)). In conclusion, maximal in vitro Na(+)-K(+)-ATPase activity was depressed with fatigue, regardless of training state, suggesting that this may be an important determinant of fatigue.  相似文献   

8.
We investigated whether depressed muscle Na(+)-K(+)-ATPase activity with exercise reflected a loss of Na(+)-K(+)-ATPase units, the time course of its recovery postexercise, and whether this depressed activity was related to increased Na(+)-K(+)-ATPase isoform gene expression. Fifteen subjects performed fatiguing, knee extensor exercise at approximately 40% maximal work output per contraction. A vastus lateralis muscle biopsy was taken at rest, fatigue, 3 h, and 24 h postexercise and analyzed for maximal Na(+)-K(+)-ATPase activity via 3-O-methylfluorescein phosphatase (3-O-MFPase) activity, Na(+)-K(+)-ATPase content via [(3)H]ouabain binding sites, and Na(+)-K(+)-ATPase alpha(1)-, alpha(2)-, alpha(3)-, beta(1)-, beta(2)- and beta(3)-isoform mRNA expression by real-time RT-PCR. Exercise [352 (SD 267) s] did not affect [(3)H]ouabain binding sites but decreased 3-O-MFPase activity by 10.7 (SD 8)% (P < 0.05), which had recovered by 3 h postexercise, without further change at 24 h. Exercise elevated alpha(1)-isoform mRNA by 1.5-fold at fatigue (P < 0.05). This increase was inversely correlated with the percent change in 3-O-MFPase activity from rest to fatigue (%Delta3-O-MFPase(rest-fatigue)) (r = -0.60, P < 0.05). The average postexercise (fatigue, 3 h, 24 h) alpha(1)-isoform mRNA was increased 1.4-fold (P < 0.05) and approached a significant inverse correlation with %Delta3-O-MFPase(rest-fatigue) (r = -0.56, P = 0.08). Exercise elevated alpha(2)-isoform mRNA at fatigue 2.5-fold (P < 0.05), which was inversely correlated with %Delta3-O-MFPase(rest-fatigue) (r = -0.60, P = 0.05). The average postexercise alpha(2)-isoform mRNA was increased 2.2-fold (P < 0.05) and was inversely correlated with the %Delta3-O-MFPase(rest-fatigue) (r = -0.68, P < 0.05). Nonsignificant correlations were found between %Delta3-O-MFPase(rest-fatigue) and other isoforms. Thus acute exercise transiently decreased Na(+)-K(+)-ATPase activity, which was correlated with increased Na(+)-K(+)-ATPase gene expression. This suggests a possible signal-transduction role for depressed muscle Na(+)-K(+)-ATPase activity with exercise.  相似文献   

9.
The modulatory effects of calcium ions on highly active Na+, K(+)-ATPase from calf brain and pig kidney tissues have been studied. The inhibitory action of Ca2+free on this enzyme depends on the level of ATP (but not AcP). The reduction of pH from 7.4 to 6.0 noticeably increases, but the elevation of pH to 8.0, in its turn, decreases the inhibition of ATP-hydrolyzing activity by calcium. With the increase of K+ concentration (in contrast to Na+) the sensibilization of Na+, K(+)-ATPase to Ca ions is observed. In the presence of potassium ions Mg2+free effectively modifies the inhibitory action of Ca2+free on this enzyme. Ca2+free (0.16-0.4 mM) decreases the sensitivity of Na+, K(+)-ATPase to action of the specific inhibitor ouabain in the presence of ATP. In the presence of AcP (phosphatase reaction) such a change of enzyme sensitivity to ouabain isn't observed. The influence of membranous effects of Ca2+ on the interaction of Na+, K(+)-ATPase with the essential ligands and cardiosteroids is discussed.  相似文献   

10.
In the present study we examined the effect of dietary supplementation with the pyridoindole antioxidant stobadine on functional properties of the cardiac Na(+),K(+)-ATPase in diabetic rats. Diabetes lasting sixteen weeks which was induced by a single i.v. dose of streptozotocin (55 mg x kg(-1)) was followed by decrease in the enzyme activity. Evaluation of kinetic parameters revealed a statistically significant decrease in the maximum velocity (Vmax) (32% for ATP-activation, 33% for Na(+)-activation), indicating a diabetes-induced diminution of the number of active enzyme molecules in cardiac sarcolemma. The ATP-binding properties of the enzyme were not affected by diabetes as suggested by statistically insignificant changes in the value of Michaelis-Menten constant, K(M (ATP)). On the other hand, the affinity to sodium decreased as suggested by 54% increase in the K(M (Na+)) value. This impairment in the affinity of the Na(+)-binding site together with decreased number of active Na(+),K(+)-ATPase molecules are probably responsible for the deteriorated enzyme function in hearts of diabetic animals. Administration of stobadine to diabetic rats dramatically improved the function of cardiac Na(+),K(+)-ATPase with regard to Na(+)-handling, as documented by statistically significant elevation of Vmax by 66 and 47% decrease in K(M (Na+)). Our data suggest that stobadine may prevent the diabetes-induced deterioration of cardiac Na(+),K(+)-ATPase, thus enabling to preserve its normal function in regulation of intracellular homeostasis of Na(+) and K(+) ions.  相似文献   

11.
In vivo effect of lead on Na, K(+)-ATPase was studied in plasma membrane/mitochondrial fraction of P. indicus post-larvae (PL), exposed to 30 days to a sublethal concentration (1.44 ppm) of lead. A significant (P < 0.05) decrease in the enzyme activity was observed for exposed PL with respect to their controls at different intervals except 24hr. Further the substrate (ATP) and ion (Na+ and K+)-dependent kinetics of Na+, K(+)-ATPase was studied with the plasma membrane/mitochondrial fractions of control and 30 days exposed PL. The apparent KM and V(max). values were calculated to determine the nature of inhibition. Both the control and exposed PL showed almost the same apparent KM values in the presence of different substrate or ion concentrations indicating that lead interacts with the enzyme at a different binding site.  相似文献   

12.
The influence of intracellular sodium concentration ( [Na+]i) on the number of Na(+)-K(+)-ATPase pumps was examined in cortical collecting tubules (CCD) of kidneys from rabbits in different aldosterone conditions. Specific [3H]ouabain binding was measured in isolated CCD with various [Na+]i. Experiments were performed on adrenalectomized rabbits receiving only a substitutive dose of dexamethasone and on adrenalectomized rabbits replete with aldosterone. In aldosterone-replete rabbits, the number of binding sites increased linearly with [Na+]i, from 16 fmol/nl tubular volume at 15 mM Na+i to 39 fmol/nl tubular volume at 140 mM Na+i. Neither actinomycin D (5 microM) nor cycloheximide (10 microM) prevented this [Na+]i-dependent increase. In adrenalectomized rabbits, the number of ouabain-binding sites was reduced and did not increase with [Na+]i. These results are in favor of the presence of a "latent" pool of pumps in CCD, rapidly recruited under [Na+]i influence. Aldosterone appears to be required for the constitution and/or activation of this pool.  相似文献   

13.
Slices of rat corpora lutea (CL) incubated with prostaglandin F2 alpha (PGF2 alpha) in Krebs-Hensenleit (K-H) Ringer solution showed a decrease in Na+-K+-ATPase activity after 60 min of incubation. However, PGF2 alpha in vitro did not alter Na+-K+-ATPase activity of isolated luteal membrane fractions. Following PGF2 alpha-induced in vivo luteal regression, reduction of Vmax and elevation of the activation energy above transition temperature of the lipid phase of the membrane occurred without changes in Km, optimum pH and transition temperature. These results suggest that reduction of Na+-K+-ATPase activity after PGF2 alpha treatment may be due to reduction in the number of enzyme molecules or to masking of the active site of the enzyme without any change in enzyme characteristics. In addition, a change in membrane-bound enzyme activity may be an early step in PGF2 alpha-induced luteolysis.  相似文献   

14.
The Na(+),K(+)-ATPase is postulated to be involved in systemic vascular hypertension through its effects on smooth muscle reactivity and cardiac contractility. Investigating the kinetic properties of the above enzyme we tried to assess the molecular basis of alterations in transmembrane Na(+)-efflux from cardiac cells in spontaneously hypertensive rats (SHR). In the investigated group of SHR the systolic blood pressure and the heart weight were increased by 48% and by 60%, respectively. Upon activating the cardiac Na(+),K(+)-ATPase with substrate, its activity was lower in SHR in the whole concentration range of ATP. Evaluation of kinetic parameters revealed a decrease of the maximum velocity (Vmax) by 28% which was accompanied with lowered affinity of the ATP-binding site as indicated by the increased value of Michaelis-Menten constant (Km) by 354% in SHR. During activation with Na(+), we observed an inhibition of the enzyme in hearts from SHR at all tested Na(+) concentrations. The value of Vmax decreased by 37%, and the concentration of Na(+) that gives half maximal reaction velocity (KNa) increased by 98%. This impairment in the affinity of the Na(+)-binding site together with decreased affinity to ATP in the molecule of the Na(+),K(+)-ATPase are probably responsible for the deteriorated efflux of the excessive Na(+) from the intracellular space in hearts of SHR.  相似文献   

15.
Despite its importance for placental function, syncytiotrophoblast Na(+)-K(+)-ATPase has not been studied in detail. We purified syncytiotrophoblast microvillous (MVM) and basal (BM) membranes from full-term human placenta. Western blotting with isoform-specific antibodies demonstrated the presence of the alpha(1)-subunit, but not the alpha(2)- or alpha(3)-subunits, in MVM and BM. Relative density per unit membrane protein in BM was 48 +/- 1% (mean +/- SE, n = 4, P < 0.02) of that in the MVM. The activity of Na(+)-K(+)-ATPase was lower in BM (1.4 +/- 0.14 micromol. mg(-1). min(-1), n = 8, P < 0.02) than in MVM (3.9 +/- 0.25 micromol. mg(-1). min(-1)). Immunocytochemistry confirmed the distribution of Na(+)-K(+)-ATPase to MVM and BM. These findings suggest that the syncytiotrophoblast represents a type of transporting epithelium different from the classical epithelia found in the small intestine and kidney, where Na(+)-K(+)-ATPase is confined to the basolateral membrane only. This unique polarization of the Na(+) pump does not, however, preclude a net transcellular transport of Na(+) to the fetus.  相似文献   

16.
The aim of this study was to investigate the effect of different cytidine-5'-diphosphocholine (CDP-choline) concentrations (0.1-1 mM) on acetylcholinesterase (AChE), (Na+,K+)-ATPase and Mg(2+)-ATPase activities in homogenates of adult and aged rat hippocampi. Tissues were homogenised, centrifuged at 1000 x g for 10 min and in the supernatant, AChE activity and Na+,K(+)-ATPase and Mg(2+)-ATPase activities were determined according to Ellman's method and Bowler's and Tirri's method, respectively. After an 1-3 h preincubation of the homogenised tissue with CDP-choline, a maximal AChE stimulation of about 25% for both adult and aged rats (p < 0.001) and a Na+,K(+)-ATPase activation of about 50% for adult rats (p < 0.001) and about 60% for aged rats (p < 0.001) were observed, while hippocampal Mg(2+)-ATPase activity was not influenced in either adult or aged animals. It is suggested that: CDP-choline can restore hippocampal AChE and Na+,K(+)-ATPase activities in the aged rat and thus it may play a role in improving memory performance which is impaired by aging and some neuronal disturbances.  相似文献   

17.
The distribution of iron and calcium in hepatic subcellular fractions of female rats treated with endrin (1,2,3,4,10,10-hexachloro-6,7-epoxy-1,4,4 alpha,5,6,7,8,8 alpha- octahydroendo,endo-1,4:5,8-dimethanonaphthalene) was determined. Endrin in corn oil was administered orally to rats in single doses of 3, 4.5, or 6 mg/kg, and the animals were killed at 0, 12, 24, 48, or 72 hr post-treatment. Iron and calcium were determined by atomic absorption spectroscopy. The administration of endrin increased the iron content of mitochondria and decreased the iron content of microsomes and nuclei. Significant increases occurred in the calcium content of mitochondria, microsomes, and nuclei. Thus, the results indicate that with respect to the subcellular distribution of iron and calcium, endrin produces differential effects. Vitamin E succinate administration partially prevented the endrin-induced hepatic alterations in iron and calcium homeostasis. Endrin also produced dose- and time-dependent increases in the liver and spleen weight/body weight ratios, while decreasing the thymus weight/body weight ratios. The altered distribution of calcium and iron may contribute to the broad range of effects of endrin.  相似文献   

18.
In our previous report, we demonstrated that the functions of phagocytes and lymphocytes were defective in patients with systemic lupus erythematosus (SLE). In an attempt to further clarify the defective mechanisms of these cells, 25 active SLE, 10 bronchial asthma patients (BA) on corticosteroids and 25 age and sex-matched normal individuals were investigated for the expression of membraneous C3b receptors, ionophore-induced 45Ca(2+)-uptake, mitochondrial potentials and phagocytic activity of neutrophils. We found decreased expression of C3b receptors on SLE PMN in both resting (37.2 +/- 3.7% of the normal controls) and FMLP-stimulated (68.3 +/- 7.1% of the normal controls) conditions, whereas the C3b receptor expression on BA-PMN receiving long-term steroid treatment was not different from normal controls. This suggests that the defective phagocytosis of SLE PMN is in the recognition, but not in the ingestion phase because of the normal function of Ca(2+)-influx and mitochondrial activity in SLE PMN. On the other hand, hyporesponsiveness to PHA stimulation (stimulation index: 127.4 +/- 46.3 in SLE vs. 311.2 +/- 30.4 in normals, p = 0.0077) was a distinct cell-mediated immune abnormality in our SLE patients. We measured the membrane potential of individual cells using 3,3'-dihexyloxacarbocyanin and found hyperpolarization in resting SLE lymphocytes. However, the membrane polarization of SLE lymphocytes became lower than that of normal cells after PHA stimulation for 3 days. A similar tendency was also found in Na(+)-K(+)-dependent ATPase activity in SLE lymphocytes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Normalization of intracellular sodium (Na) after postischemic reperfusion depends on reactivation of the sarcolemmal Na(+)-K(+)-ATPase. To evaluate the requirement of glycolytic ATP for Na(+)-K(+)-ATPase function during postischemic reperfusion, 5-s time-resolution 23Na NMR was performed in isolated perfused rat hearts. During 20 min of ischemia, Na increased approximately twofold. In glucose-reperfused hearts with or without prior preischemic glycogen depletion, Na decreased immediately upon postischemic reperfusion. In glycogen-depleted pyruvate-reperfused hearts, however, the decrease of Na was delayed by approximately 25 s, and application of the pyruvate dehydrogenase (PDH) activator dichloroacetate (DA) did not shorten this delay. After 30 min of reperfusion, Na had almost normalized in all groups and contractile recovery was highest in the DA-treated hearts. In conclusion, some degree of functional coupling of glycolytic ATP and Na(+)-K(+)-ATPase activity exists, but glycolysis is not essential for recovery of Na homeostasis and contractility after prolonged reperfusion. Furthermore, the delayed Na(+)-K(+)-ATPase reactivation observed in pyruvate-reperfused hearts is not due to inhibition of PDH.  相似文献   

20.
The interrelationships among plasma renin activity (PRA, ng AI/ml plasma/hr), aldosterone concentration (ng%), and renal Na+-K+-ATPase activity (mumole PO4/mg protein/hr) were studied in 9 weanling normotensive spontaneously hypertensive rats (SHR), 9 adult hypertensive SHR, and 9 weanling and 9 adult normotensive Wistar-Kyoto rats (WKY). All groups were placed on a normal (0.4% sodium) diet. PRA and plasma aldosterone, measured in samples drawn from the ether-anesthetized rat, were higher in weanling SHR (15.2 +/- 2.0, 37 +/- 4.2) than in WKY. PRA measured in samples collected from a separate group of unanesthetized weanling SHR was also greater than in age-matched WKY. In adult SHR, PRA (6.1 +/- 0.9) and plasma aldosterone (20.0 +/- 2.7) were decreased. During the weanling period Na+-K+-ATPase activity in SHR was not only greater than in age-matched WKY but was also increased compared to adult normotensive and hypertensive rats (137 +/- 9 weanling SHR, 89 +/- 7 weanling WKY, 73 +/- 11 adult SHR, 84 +/- 17 adult WKY). Thus, during the weanling period the renin-angiotensin-aldosterone (R-A-A) system and renal Na+-K+-ATPase activity are activated in SHR. The elevation of Na+-K+-ATPase activity may be due to increased aldosterone levels. It was noted, however, that plasma aldosterone was similar in adult WKY and weanling SHR, while Na+-K+-ATPase activity was higher in SHR. These findings involving R-A-A and renal Na+-K+-ATPase activity prior to the elevation of blood pressure suggest that the kidneys may play a role in the initiation of hypertension in SHR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号