首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To examine the possible link between endocrine status and perinatal problems related to cattle cloning, plasma concentrations of cortisol, adrenocorticotropic hormone (ACTH) and components of the insulin-like growth factor (IGF) system were compared between 13 somatic cell cloned and seven control Japanese Black calves (five produced by artificial insemination [AI] and two produced from in vitro fertilized embryos [IVP]) immediately after birth. Five cloned calves required delivery by cesarean section (C-section), while all of control calves were delivered by spontaneous vaginal delivery. The C-section delivered clones were heavier at birth, followed by vaginally delivered clones and IVP controls, and AI controls were the lightest. The neonatal mortality (death within the 1st week) of C-section delivered clones was also high (4/5) compared to that of vaginally delivered clones (1/8) or controls (0/7). Plasma concentrations of cortisol and IGF-I were lower in the clones than control calves although the plasma ACTH level was not different between the groups. A striking difference was observed in plasma IGF binding protein (IGFBP) profile in which cloned calves had a greater relative abundance of IGFBP-2 compared with controls. Observed differences suggest that insufficient prepartum rise in plasma cortisol of cloned calves failed to initiate the switch to an adult mode of the IGF system during late gestation and therefore parturition was not spontaneous. Inappropriate developmental changes in endocrine system may be partly responsible for the fetal overgrowth and perinatal complications associated with the cloning technology.  相似文献   

2.
The aim of this study was to evaluate the difference in birth weight and gestation length between Japanese Black calves obtained from transfer of bovine embryos produced in vitro (IVP) and those developed in vivo (IVD). An additional objective was to clarify the sire effect on birth weight and gestation length and to examine the birth rate of heavier calves. Two Japanese Black bulls breed at our experimental station were used as a semen source for production of IVP and IVD embryos. Thirty-eight Japanese Black heifers and cows of various genetic backgrounds were used as embryo donors for IVD embryos. Ovaries for IVP embryos were collected at random at a local slaughterhouse from Japanese Black cattle of various genetic backgrounds. IVP embryos were produced using co-culturing with cumulus cells in 5% CS+TCM 199. Both the IVD and IVP embryos were transferred non-surgically to Holstein recipients on day 7+/-1 of estrous cycle. In this study, the birth weights and gestation lengths of half-sib single calves for bull A and B were analyzed.The numbers of single calves born by transfer of IVP and IVD embryos for bull A and B were 133 and 121, 243 and 465, respectively. The birth weight of the IVP calves was significantly higher (P<0.01) than that of the IVD (bull A: 31.0+/-0.4 kg versus 27.2+/-0.4 kg and bull B: 29.9+/-0.6 kg versus 26.6+/-0.2 kg). Gestation length of the IVP calves for bull A was significantly longer (P<0.01) than that of the IVD (291.9+/-0.9 days versus 283.6+/-0.5 days). However, for bull B, there were no differences in gestation length between the IVP and IVD calves (285.9+/-0.7 days versus 286.2+/-0.3 days). These results clearly indicated that IVP calves had heavier birth weights than IVD calves but that the average gestation length of IVP calves was not always longer than that of IVD calves. Furthermore, the birth rate of heavier calves and the incidence of stillbirth and perinatal mortality up to 48 h post partum in IVP calves (bull A: 11.3%, bull B: 7.8%) were greater (P<0.05) than those in IVD calves from both bulls (bull A: 4.1%, bull B: 3.7%).  相似文献   

3.
We report on cloning experiments designed to explore the causes of peri- and post-natal mortality of cloned lambs. A total of 93 blastocysts obtained by nuclear transfer of somatic cells (granulosa cells) were transferred into 41 recipient ewes, and pregnancies were monitored by ultrasound scanning. In vitro derived, fertilized embryos (IVF, n=123) were also transferred to assess oocyte competence, and naturally mated ewes (n=120) were analysed as well. Cloned embryos developed to the blastocyst stage and implanted at the same rate as IVF embryos. After day 30 of gestation, however, dramatic losses occurred, and only 12 out of 93 (13%) clones reached full-term development, compared to 51 out of 123 (41.6%) lambs born from the IVF control embryos. Three full-term lamb clones were delivered stillborn, as a result of placental degeneration. A further five clone recipients developed hydroallantois. Their lambs died within 24h following delivery by caesarian section, and displayed degenerative lesions in liver and kidney resulting from the severe hydroallantois. One set of twins was delivered by assisted parturition at day 150, but died 24h later due to respiratory distress syndrome. The remaining two clone recipients underwent caesarian section, and the corresponding two lambs displayed signs of respiratory dysfunction and died at approximately 1 month of age due to a bacterial complication. Blood samples collected from the cloned lambs after birth revealed a wide range of abnormalities indicative of kidney and liver dysfunction. Macroscopical and histopathological examination of the placentae revealed a marked reduction in vascularization, particularly at the apex of the villous processes, as well as a loss of differentiation of the trophoblastic epithelium. Our results strongly suggest that post-mortality in cloned lambs is mainly caused by placental abnormalities.  相似文献   

4.
One or two in vitro-produced (IVP) Japanese Black (JB) cattle embryos at 8 days after in vitro fertilization were transferred to the contralateral uterine horn of previously bred Japanese Shorthorn (JSH) or JSH-JB cross recipients, and then the occurrence of early embryonic death, abortion during mid- and late gestation, and calving loss were recorded. The survival rate of embryos, including indigenous ones, was not affected by the number of embryos transferred, and a significantly higher twinning rate (68% of pregnant recipients at 80 days after transfer) was achieved when two IVP embryos were transferred, as compared with the rate when one IVP embryo was transferred (24%). In late ET (recipients at 8.5-9.0 days after the onset of oestrus), the embryo survival rate (22%) and the pregnancy rate (42%) at 80 days after ET were significantly lower than those rates in the synchronous ET (recipients at 8.0 days after the onset of oestrus; 47 and 79%, respectively). In the early ET (recipients at 6.0-7.5 days after the onset of oestrus), no significant differences from the synchronous ET were detected in these rates. Twenty-six percent of twin pregnant recipients were aborted during mid- or late-pregnancy, and 39% of twin calves were stillborn. The mean gestation length of the twin-bearing JSH dams (276 days) was 1 week shorter than that of the single-bearing JSH dams, and it was 2 weeks shorter than that of the JB dams bearing a single JB calf derived from the IVP embryos. The longer gestation length of single JB calves derived from IVP embryos resulted in a significantly higher mean birth weight than that of in vivo control calves with the standard length of gestation. In conclusion, the number of embryos to be transferred did not affect the embryo survival rate, and the transfer of two IVP embryos to previously inseminated recipients induced a significantly higher twinning rate during early pregnancy than that of one IVP embryo transfer. The incidence of embryonic losses during early pregnancy increased when Day 8 embryos were transferred to the recipients later in the oestrous cycle (>8.0 days). The results suggested that one cause of the high rate of abortions and stillbirths in twin-bearing dams is the difference in the mean gestation length between the native JSH and JB foetuses derived from transferred IVP embryos.  相似文献   

5.
To assess the developmental potential of nuclear transfer embryos in cattle using mammary gland epithelial (MGE) cells derived from the colostrum, we compared the effectiveness of cloning using those cells and fibroblast cells derived from the ear. The fusion rate of the enucleated oocytes with fibroblast cells (75 +/- 4%) was significantly higher than that with MGE cells (56 +/- 7%, P<0.05). There were no significant differences in the cleavage rate (85 +/- 3% vs. 91+/- 2%) or in the developmental rate to the blastocyst stage (35 +/- 6% vs. 35 +/- 5%) using MGE cells vs. fibroblast cells as donor nuclei (P>0.05). After transfer of blastocysts derived from nuclear transfer embryos produced using MGE cells and fibroblast cells, 13% (4/31) and 16% (6/37) of recipient heifers were pregnant on Day 42 as assessed by ultrasonography, respectively. Two of the 4 and 4 of the 6 recipients of embryos with MGE cell- and fibroblast cell-derived nuclei, respectively, aborted within 150 days of pregnancy. Four live female calves were obtained from MGE cells or fibroblast cells. However, one died from internal hemorrhage of the arteria umbilicalis. The other three calves were normal and healthy. There were no differences in the pregnancy rate or calving rate when using MGE cells vs. fibroblast cells. Microsatellite DNA analyses confirmed that the cloned calves were genetically identical to the donor cows and different from the recipient heifers. We conclude that colostrum-derived MGE cells have the developmental potential to term by nuclear transfer, and the efficiency of development of those cloned embryos was the same as that of embryos obtained using fibroblast cells as donor nuclei, although there was a significant difference in the fusion rate. This method using MGE cells derived from colostrum, which is obtained easily and safely from live adult cows, is more advantageous for cloning with somatic cells.  相似文献   

6.
Ontogeny of cloned cattle to lactation   总被引:1,自引:0,他引:1  
Central to the success of large animal cloning is the production of healthy animals that can provide products for human health, food, and other animal agriculture applications. We report development of cloned cattle derived from 34 genetically unique, nonembryonic cell lines using nuclear transfer performed between 1 January 1998 and 29 February 2000. Nearly 25% (535/2170) of the recipients receiving reconstructed embryos initiated pregnancy. Overall, 19.8% (106/535) of the initiated pregnancies resulted in live births, while 77% (82/106) of these cattle clones remain healthy and productive today. Although a wide variation in birth weight of clone calves was observed, their growth rates, reproductive performance, and lactation characteristics are similar to that found in noncloned dairy cattle. Our data represent the most comprehensive information on cattle derived from nuclear transfer procedures and indicate that this emerging reproductive technology offers unique opportunities to meet critical needs in both human health care and agriculture.  相似文献   

7.
Once weekly from 30 to 270 days of gestation in 13 cows, Doppler ultrasound scanning (triplex Doppler system) was done to assess blood-flow parameters of both median uterine arteries. Resistance, velocity and volume indices were measured. Resistance index values were negatively correlated to all other blood-flow parameters (P<0.05), but there were positive correlations between velocity and volume indices (P<0.05). Resistance indices were lower, and velocity and volume indices were significantly higher in the median uterine artery ipsilateral versus contralateral to the fetus. Resistance indices decreased continuously during the first 36 weeks of pregnancy. Velocity values rose three-fold, whereas the area increased 20-fold and the volume increased 17-fold by the end of gestation (P<0.05). Birth weight of calves was positively correlated with blood-flow volume (r=0.34) but negatively correlated with the resistance index (r=-0.45). There were no significant differences between male versus female calves (at any stage of gestation) in the resistance, time-average maximum velocity, and volume indices (P>0.05). In conclusion, arterial blood flow was monitored with transrectal Doppler sonography in both median uterine arteries weekly throughout pregnancy in cattle; this could be very valuable for monitoring pregnancies at high risk for abnormalities of the placenta, fetus or both, e.g. cloned calves.  相似文献   

8.
In vitro systems are commonly used for the production of bovine embryos. Comparisons between in vivo and in vitro produced embryos illustrate that the morphology of preimplantation-stage embryos differ significantly, the survival of embryos and fetuses is decreased, the size distributions of the populations of conceptuses and fetuses are altered throughout gestation, and placental development is significantly changed. Taken together these findings indicate that exposure to some in vitro environments during the first 7 days of life can profoundly influence fetal and placental development in cattle. An understanding of how in vitro oocyte maturation, in vitro fertilization, and embryo culture systems influence both fetal and placental development should result in systems that consistently produce normal embryos, fetuses, and calves.  相似文献   

9.
The possible application of the bovine in vitro fertilization technique for economical beef production was evaluated by transferring in vitro produced Belgian Blue embryos to synchronized dairy cows and heifers. In total, 4167 oocytes, collected in the slaughterhouse from double-muscled Belgian Blue cows, were matured in vitro. Frozen-thawed semen from 3 Belgian Blue bulls was used for in vitro fertilization. Zygotes were cultured in B(2) + 10% estrous cow serum together with oviductal cells at 39 degrees C in 5% CO(2) in air. After 7 days, 576 (13.8%) transferable embryos were obtained. One hundred and eighteen of the most advanced embryos were selected for fresh transfer into 90 recipients. Some of the remaining embryos were frozen using conventional methods. After fresh transfer, 50 recipients (55.6%) had elevated progesterone at day 23. Thirty cows (33.3%) calved after a mean gestation length of 282.8+/-6.0 days and produced 25 single births and 5 twins. The sex ratio was 71.4%. The mean birth weight was 45.1+/-8.3 kg. Three calves were of the conventional type instead of double-muscled and 2 calves died of congenital malformations. After transfer of in vitro produced frozen-thawed Belgian Blue embryos into 27 recipients (1 embryo/recipient), 2 bull calves (7.4%) were born. Bovine embryo production by in vitro techniques could form a low-cost supply of beef calves. However, to render it commercially attractive, selection of sires and dams has to be performed with great care.  相似文献   

10.
The main objectives of this investigation were to monitor the birth weight of calves and gestation length following artificial insemination (AI) and transfer of in vivo or in vitro produced Korean native, Hanwoo embryos. Embryos produced in vivo were recovered from uterine flushings of superovulated cows 7 days after AI. Those embryos produced in vitro were co-cultured with cumulus cells for 7-8 days after in vitro fertilization. The birth weights of calves following the transfer of in vitro produced (IVP) embryos were heavier than calves from both of AI- and in vivo-derived embryo transferred calves in both sexes (29.6, 24.1 and 25.2kg, respectively, P<0.05). The IVP calves also had a longer gestation length (293.9, 285.8 and 283.8 days, respectively, P<0.05).  相似文献   

11.
Although healthy animals are born after nuclear transfer with somatic cells nuclei, the success of this procedure is generally poor (2%-10%) with high perinatal losses. Apparently normal surviving animals may have undiagnosed pathologies that could develop later in life. The gross pathology of 16 abnormal bovine fetuses produced by nuclear transfer (NT) and the clinical, endocrinologic (insulin-like growth factors I and II [IGF-I and IGF-II], IGF binding proteins, post-ACTH stimulation cortisol, leptin, glucose, and insulin levels), and biochemical characteristics of a group of 21 apparently normal cloned calves were compared with those of in vitro-produced (IVP) controls and controls resulting from artificial insemination. Oocytes used for NT or IVP were matured in vitro. NT to enucleated oocytes was performed using cultured adult or fetal skin cells. After culture, Day 7, grade 1-2 embryos were transferred (one per recipient). All placentas and fetuses from clones undergoing an abnormal pregnancy showed some degree of edema due to hydrops. Mean placentome number was lower and mean placentome weight was higher in clones than in controls (69.9 +/- 9.2 placentomes with a mean weight of 144.3 +/- 21.4 g in clones vs. 99 and 137 placentomes with a mean individual weight of 34.8 and 32.4 g in two IVP controls). Erythrocyte mean cell volume was higher at birth (P < 0.01), and body temperature and plasma leptin concentrations were higher and T4 levels were lower during the first 50 days and the first week (P < 0.05), respectively, in clones. Plasma IGF-II concentrations were higher at birth and lower at Day 15 in clones (P < 0.05). Therefore, apparently healthy cloned calves cannot be considered as physiologically normal animals until at least 50 days of age.  相似文献   

12.
Buffalos (Bubalus bubalis) cloned by nuclear transfer of somatic cells   总被引:1,自引:0,他引:1  
Shi D  Lu F  Wei Y  Cui K  Yang S  Wei J  Liu Q 《Biology of reproduction》2007,77(2):285-291
Cloning of buffalos (Bubalus bubalis) through nuclear transfer is a potential alternative approach in genetic improvement of buffalos. However, to our knowledge, cloned offspring of buffalos derived from embryonic, fetal, or somatic cells have not yet been reported. Thus, factors affecting the nuclear transfer of buffalo somatic cells were examined, and the possibility of cloning buffalos was explored in the present study. Treatment of buffalo fibroblasts and granulosa cells with aphidicolin plus serum starvation resulted in more cells being arrested at the G0/G1 phase, the proportion of cells with DNA fragmentation being less, and the number of embryos derived from these cells that developed to blastocysts being greater. In addition, a difference was found in the development of embryos reconstructed with fetal fibroblasts from different individuals (P < 0.001). Forty-two blastocysts derived from granulosa cells and fetal fibroblasts were transferred into 21 recipient swamp buffalos, and 4 recipients were confirmed to be pregnant by rectal palpation on Day 60 of gestation. One recipient received two embryos from fetal fibroblasts aborted on Day 300 of gestation and delivered two female premature calves. Three recipients maintained pregnancy to term and delivered three female cloned calves after Days 338-349 of gestation. These results indicate that buffalo embryos derived from either fetal fibroblasts or granulosa cells can develop to the term of gestation and result in newborn calves.  相似文献   

13.
In the present study, somatic cell cloning technology was used to produce eight newborn calves from an aged, infertile bull. Average birth weight of these calves was significantly higher than that of calves produced using AI. Four of the cloned calves died during the peripartum period; the remaining four (Clones A-D) survived and were used in this study. Two of the surviving calves (Clones C and D) were castrated; growth rates of the intact and castrated clones were similar to those of intact and castrated bulls, respectively, that had been derived by AI. Both uncastrated bulls (Clones A and B) began to produce normal semen at approximately 12 months of age. Semen produced by these clones, and their nuclear donor, was subsequently used for IVF; the proportion of IVM-IVF oocytes developing to the blastocyst stage was 23.4% (50/214), 28.4% (52/183) and 30.9% (63/204), respectively. Conception rates for AI were 54.5% (12/22) and 62.7% (64/102) for semen derived from Clone A and from the nuclear donor, respectively. The length of pregnancy and birth weight of the calves derived from semen collected from clones were similar to those of calves obtained by conventional AI using semen from their nuclear donor. Therefore, sires cloned from the somatic cells of an aged and infertile bull had normal fertility.  相似文献   

14.
Eyestone WH 《Theriogenology》1999,51(2):509-517
Transgenic technology permits major modifications of phenotype by introducing subtle changes in genotype. For domestic farm species, genetic modification may be used to enhance agricultural production or to generate novel genotypes capable of producing heterologous proteins for biomedical applications. The advent of in vitro embryo production techniques has facilitated the large-scale, commercial use of transgenic technology in cattle. Accordingly, we employed in vitro-produced zygotes and embryos in an effort to generate transgenic cattle. Overall, pronuclei in 36,530 in vitro matured and fertilized zygotes were microinjected with a construct designed to express human alpha-lactalbumin in the mammary gland. Of these, 1,472 developed and were transferred to recipients, including 148 twin transfers. Initial pregnancy rate on Day 30 of gestation was 28% (374/1,324). Subsequent calving rate was 17% (226/1,324). Eighteen calves (8%) were transgenic. In vitro produced embryos were used to facilitate breeding of transgenic bulls. Frequency of transgene transmission varied from 3 to 54% between bulls, indicating varying degrees mosaicism. Embryos produced in vitro by these bulls were biopsied and screened for transgenesis prior to transfer to recipients; so far all (6/6) calves born from screened, transgenic embryos were themselves transgenic.  相似文献   

15.
In this study we evaluated cloning efficiency of second-generation (G2) cloned Holstein cows derived from ear fibroblasts of a first-generation (G1) cloned cow, and assessed their health status in terms of physical, growth and reproductive parameters. Compared with G1 cloning, G2 cloning showed a slight decrease on blastocyst rate of reconstructed embryos (30.2±5.8% vs. 28.5±7.2%, p>0.05), while the quality of its blastocysts reduced significantly (Grade 1 and Grade 2, 21.1±4.1% vs. 17.1±5.7%, p<0.05). After embryo transfer (ET), both pregnancy rate to term and calving rate of G2 cloning were approximately half of G1 cloning (5.8% vs. 10.7%; 3.9% vs. 8.6%, p>0.05). Six G2 cloned cows were delivered, and three of them survived. G2 cloned calves displayed symptoms of being overweight at birth and tachycardia in the first week after birth. During the first 12 months, the growth of G2 cloned calves was similar to control calves derived from artificial insemination (AI). Furthermore, the interindividual variation of growth within the G2 clonal family was smaller except at birth and at two months of age. Interestingly, although G2 cloned cows reached puberty 45 days later in comparison with control cows derived from AI, they were all pregnant by AI, and gave birth to healthy calves. This suggests that their reproductive performance was not affected by late puberty. In summary, our results showed that although cloning efficiency of G2 was lower than that of G1, the surviving G2 clones appeared physically healthy and were fertile.  相似文献   

16.
The aetiology of abortions and calf mortality in 65 Danish cattle herds consisting of both dairy and beef breeds during a 1-year period is described. All observed aborted foetuses, stillborn calves, and calves dying before 6 months of age were necropsied, and relevant microbiological examinations were performed. A total of 240 calves and 66 abortions were submitted corresponding to a calf mortality rate of 7%. The abortion frequency could not be calculated. 43% of the calves died at day 0, while 22% were aborted, 15% died during the first week of life, 9% died from 1 to 4 weeks of age, and 11% died at the age of 1 to 6 months. The most common cause was neonatal pulmonic atelectasis (stillbirth) followed by foetal infections, pneumonia, and septicaemia.  相似文献   

17.
Body dimensions, birth and organ weights of calves derived from embryos produced in 2 in vitro culture systems (modified SOFaa with 20% cattle serum and co-cultured with oviduct-epithelium cells [IVPserum, n=8], and modified SOFaa with 3 mg/mL PVA [IVPdefined, n=6]) were compared with calves originating from artificial insemination (AI, n=85). Three additional IVP calves were included which had been vitrified as mature oocytes by the open pulled straw (OPS) method, warmed, fertilized and cultured to the blastocyst stage in modified SOFaa with 5% cattle serum, then again OPS-vitrified and warmed prior to transfer (IVPops, n=3). At birth, gestation length and birth weights were registered for all calves. At 1 wk of age all 17 IVP and 7 of the AI calves were killed, and their body dimensions and organ weights recorded. Birth weight was higher for the IVPserum and IVPops calves than for AI control calves (kg +/- SEM: IVPserum 46.9+/-1.8, IVPops 50.6+/-2.4, AI 41.8+/-0.8; P < 0.002). There was no difference between IVP and AI calves regarding gestation length and no effect of culture conditions on body dimensions or organ weights, except for longer hind legs in IVPdefined calves compared with AI calves (cm +/- SEM: IVPdefined 93+/-2, AI 87+/-2; P < 0.04). The IVPops calves had an increased liver weight compared with AI and the other IVP calves (g +/- SEM: IVPops 1.457+/-59; AI 1,117+/-37; IVPserum 1,159+/-34, IVPdefined 1,073+/-39; P < 0.0003). It is concluded that in vitro culture of bovine embryos in the presence of serum and oviduct epithelium cells increased birth weight but not organ weight and body dimension in 1-wk-old calves. However, vitrification of the ova as oocyte and again as blastocysts increased birth weight and liver size. This possible effect of cryopreservation of oocytes on subsequent fetal development awaits further investigation.  相似文献   

18.
Cloning cattle     
Over the past six years, hundreds of apparently normal calves have been cloned worldwide from bovine somatic donor cells. However, these surviving animals represent less than 5% of all cloned embryos transferred into recipient cows. Most of the remaining 95% die at various stages of development from a predictable pattern of placental and fetal abnormalities, collectively referred to as the "cloning-syndrome." The low efficiency seriously limits commercial applicability and ethical acceptance of somatic cloning and enforces the development of improved cloning methods. In this paper, we describe our current standard operating procedure (SOP) for cattle cloning using zona-free nuclear transfer. Following this SOP, the output of viable and healthy calves at weaning is about 9% of embryos transferred. Better standardization of cloning protocols across and within research groups is needed to separate technical from biological factors underlying low cloning efficiency.  相似文献   

19.
Bos taurus is a good model for embryo biotechnologies such as nuclear transfer. However, animals produced from these technologies often suffer from large calf syndrome, suggesting fetal growth dysregulation. The imprinted fetal mitogen IGF2 is clustered with H19 and the two genes are co-regulated in humans and mice. Although the allelic expression pattern of IGF2/H19 has been elucidated in agricultural species such as sheep and cattle, the underlying mechanism of their imprinting regulation has not been characterized. Using bisulfite sequencing the methylation status of 44 CpG sites in a CpG rich intergenic region of IGF2/H19 in the liver, brain, lung, kidney and placenta of control calves (produced by conventional breeding). One fragment containing 16 CpG sites was differentially methylated region (DMR), and thus may be important in regulating IGF2/H19 allelic expression.The DMR in tissues from cloned term calves that either died immediately after birth or were sacrificed due to complications shortly thereafter were examined. There were significant variations in the methylation of this DMR in some of the cloned animals compared to the controls. Most of the observed variations tended toward hypomethylation. The hypomethylation of this DMR in the liver and placenta of clones correlates with the previous observation of abnormal, biallelic expression of the H19 allele in those clones [Zhang, S., Kubota, C., Yang, L., Zhang, Y., Page, R., O’Neill, M., Yang, X., Tian, X.C., 2004. Genomic imprinting of H19 in naturally reproduced and cloned cattle. Biol. Reprod.] but not with allelic expression of IGF2 (as determined in this study). These data suggest that this DMR is involved in H19 allelic expression, but that other mechanisms probably regulate the expression of IGF2/H19. Contrary to global hypermethylation observed in cloned embryos, putative imprinting control regions can display hypomethylation trends in specific organs of cloned calves.  相似文献   

20.
Presence of placental tissues from more normal noncloned embryos could reduce the pregnancy failure of somatic cloning in cattle. In this study, inner cell mass (ICM) cells of in vitro-produced (IVP) embryos was replaced with those of nuclear transfer (NT) embryos to reconstruct bovine blastocysts with ICM and trophoblast cells from NT and IVP embryos, respectively. A total of 65 of these reconstructed embryos were nonsurgically transferred to 20 recipient beef females. Of those, two females were diagnosed pregnant by ultrasonography on day 30 of gestation. One pregnancy was lost at 60-90 days of gestation, and the other recipient cow remained pregnant at day 240 of gestation; however, this female died on day 252 of gestation. Gross pathology of the internal organs of the recipient female, a large fetus, and a large placental tissue mass suggested the massive size of the fetus and placental tissue were likely involved in terminating the life of the recipient female. Biopsy samples were harvested from the skin of the dead recipient cow, the fetus and from cotyledonary tissue. Microsatellite DNA analysis of these samples revealed that the genotype of the fetus was the same as that of the NT donor cells and different from that of the recipient cow. Correspondingly, neither the fetus nor recipient cow had the same genotype with that of the fetal cotyledonary tissue. These results present the first known documented case of a bovine somatic NT pregnancy with nonclone placental tissues after transfer of a blastocyst reconstructed by a microsurgical method to exchange of ICM cells and trophoblast tissue between NT and IVP blastocysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号