首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclin-dependent kinases (CDKs) that control cell cycle progression are regulated in many ways, including activating phosphorylation of a conserved threonine residue. This essential phosphorylation is carried out by the CDK-activating kinase (CAK). Here we examine the effects of replacing this threonine residue in human CDK2 by serine. We found that cyclin A bound equally well to wild-type CDK2 (CDK2(Thr-160)) or to the mutant CDK2 (CDK2(Ser-160)). In the absence of activating phosphorylation, CDK2(Ser-160)-cyclin A complexes were more active than wild-type CDK2(Thr-160)-cyclin A complexes. In contrast, following activating phosphorylation, CDK2(Ser-160)-cyclin A complexes were less active than phosphorylated CDK2(Thr-160)-cyclin A complexes, reflecting a much smaller effect of activating phosphorylation on CDK2(Ser-160). The kinetic parameters for phosphorylating histone H1 were similar for mutant and wild-type CDK2, ruling out a general defect in catalytic activity. Interestingly, the CDK2(Ser-160) mutant was selectively defective in phosphorylating a peptide derived from the C-terminal domain of RNA polymerase II. CDK2(Ser-160) was efficiently phosphorylated by CAKs, both human p40(MO15)(CDK7)-cyclin H and budding yeast Cak1p. In fact, the k(cat) values for phosphorylation of CDK2(Ser-160) were significantly higher than for phosphorylation of CDK2(Thr-160), indicating that CDK2(Ser-160) is actually phosphorylated more efficiently than wild-type CDK2. In contrast, dephosphorylation proceeded more slowly with CDK2(Ser-160) than with wild-type CDK2, either in HeLa cell extract or by purified PP2Cbeta. Combined with the more efficient phosphorylation of CDK2(Ser-160) by CAK, we suggest that one reason for the conservation of threonine as the site of activating phosphorylation may be to favor unphosphorylated CDKs following the degradation of cyclins.  相似文献   

2.
CDC25B is one of the three human dual-specificity phosphatases involved in the activation ofcyclin-dependent kinases at key stages of the cell division cycle. CDC25B that is responsiblefor the activation of CDK1-cyclin B1 is regulated by phosphorylation. The STK15/Aurora-Akinase locally phosphorylates CDC25B on serine 353 at the centrosome during the G2/Mtransition. Here we have investigated this phosphorylation event during the cell cycle, and inresponse to activation of the G2 DNA damage checkpoint. We show that accumulation of theS353-phosphorylated form of CDC25B at the centrosome correlates with the relocalisation ofcyclin B1 to the nucleus and the activation of CDK1 at entry into mitosis. Upon activation ofthe G2/M checkpoint by DNA damage, we demonstrate that Aurora-A is not activated andconsequently CDC25B is not phosphorylated. We show that ectopic expression of Aurora-Aresults in a bypass of the checkpoint that partially overcome by a S353A mutant of CDC25B.Finally, we show that bypass of the G2/M checkpoint by the CHK1 kinase inhibitor UCN-01results in the activation of Aurora-A and phosphorylation of CDC25B on S353. These resultsstrongly suggest that Aurora-A-mediated phosphorylation of CDC25B at the centrosome is animportant step contributing to the earliest events inducing mitosis, upstream of CDK1-cyclinB1 activation.  相似文献   

3.
4.
I Hoffmann  G Draetta    E Karsenti 《The EMBO journal》1994,13(18):4302-4310
Progression through the cell cycle is monitored at two major points: during the G1/S and the G2/M transitions. In most cells, the G2/M transition is regulated by the timing of p34cdc2 dephosphorylation which results in the activation of the kinase activity of the cdc2-cyclin B complex. The timing of p34cdc2 dephosphorylation is determined by the balance between the activity of the kinase that phosphorylates p34cdc2 (wee1 in human cells) and the opposing phosphatase (cdc25C). Both enzymes are regulated and it has been shown that cdc25C is phosphorylated and activated by the cdc2-cyclin B complex. This creates a positive feed-back loop providing a switch used to control the onset of mitosis. Here, we show that another member of the human cdc25 family, cdc25A, undergoes phosphorylation during S phase, resulting in an increase of its phosphatase activity. The phosphorylation of cdc25A is dependent on the activity of the cdc2-cyclin E kinase. Microinjection of anti-cdc25A antibodies into G1 cells blocks entry into S phase. These results indicate that the cdc25A phosphatase is required to enter S phase in human cells and suggest that this enzyme is part of an auto-amplification loop analogous to that described at the G2/M transition. We discuss the nature of the in vivo substrate of the cdc25A phosphatase in S phase and the possible implications for the regulation of S phase entry.  相似文献   

5.
Mixed lineage kinase 3 (MLK3) is a serine/threonine mitogen-activated protein kinase kinase kinase that promotes the activation of multiple mitogen-activated protein kinase pathways and is required for invasion and proliferation of ovarian cancer cells. Inhibition of MLK activity causes G2/M arrest in HeLa cells; however, the regulation of MLK3 during ovarian cancer cell cycle progression is not known. Here, we found that MLK3 is phosphorylated in mitosis and that inhibition of cyclin-dependent kinase 1 (CDK1) prevented MLK3 phosphorylation. In addition, we observed that c-Jun N-terminal kinase, a downstream target of MLK3 and a direct target of MKK4 (SEK1), was activated in G2 phase when CDK2 activity is increased and then inactivated at the beginning of mitosis concurrent with the increase in CDK1 and MLK3 phosphorylation. Using in vitro kinase assays and phosphomutants, we determined that CDK1 phosphorylates MLK3 on Ser548 and decreases MLK3 activity during mitosis, whereas CDK2 phosphorylates MLK3 on Ser770 and increases MLK3 activity during G1/S and G2 phases. We also found that MLK3 inhibition causes a reduction in cell proliferation and a cell cycle arrest in ovarian cancer cells, suggesting that MLK3 is required for ovarian cancer cell cycle progression. Taken together, our results suggest that phosphorylation of MLK3 by CDK1 and CDK2 is important for the regulation of MLK3 and c-Jun N-terminal kinase activities during G1/S, G2, and M phases in ovarian cancer cell division.  相似文献   

6.
Little is known about the posttranslational control of the cyclin-dependent protein kinase (CDK) inhibitor p21. We describe here a transient phosphorylation of p21 in the G2/M phase. G2/M-phosphorylated p21 is short-lived relative to hypophosphorylated p21. p21 becomes nuclear during S phase, prior to its phosphorylation by CDK2. S126-phosphorylated cyclin B1 binds to T57-phosphorylated p21. Cdc2 kinase activation is delayed in p21-deficient cells due to delayed association between Cdc2 and cyclin B1. Cyclin B1-Cdc2 kinase activity and G2/M progression in p21-/- cells are restored after reexpression of wild-type but not T57A mutant p21. The cyclin B1 S126A mutant exhibits reduced Cdc2 binding and has low kinase activity. Phosphorylated p21 binds to cyclin B1 when Cdc2 is phosphorylated on Y15 and associates poorly with the complex. Dephosphorylation on Y15 and phosphorylation on T161 promotes Cdc2 binding to the p21-cyclin B1 complex, which becomes activated as a kinase. Thus, hyperphosphorylated p21 activates the Cdc2 kinase in the G2/M transition.  相似文献   

7.
Pho85 is a versatile cyclin-dependent kinase (CDK) found in budding yeast that regulates a myriad of eukaryotic cellular functions in concert with 10 cyclins (called Pcls). Unlike cell cycle CDKs that require phosphorylation of a serine/threonine residue by a CDK-activating kinase (CAK) for full activation, Pho85 requires no phosphorylation despite the presence of an equivalent residue. The Pho85-Pcl10 complex is a key regulator of glycogen metabolism by phosphorylating the substrate Gsy2, the predominant, nutritionally regulated form of glycogen synthase. Here we report the crystal structures of Pho85-Pcl10 and its complex with the ATP analog, ATPγS. The structure solidified the mechanism for bypassing CDK phosphorylation to achieve full catalytic activity. An aspartate residue, invariant in all Pcls, acts as a surrogate for the phosphoryl adduct of the phosphorylated, fully activated CDK2, the prototypic cell cycle CDK, complexed with cyclin A. Unlike the canonical recognition motif, SPX(K/R), of phosphorylation sites of substrates of several cell cycle CDKs, the motif in the Gys2 substrate of Pho85-Pcl10 is SPXX. CDK5, an important signal transducer in neural development and the closest known functional homolog of Pho85, does not require phosphorylation either, and we found that in its crystal structure complexed with p25 cyclin a water/hydroxide molecule remarkably plays a similar role to the phosphoryl or aspartate group. Comparison between Pho85-Pcl10, phosphorylated CDK2-cyclin A, and CDK5-p25 complexes reveals the convergent structural characteristics necessary for full kinase activity and the variations in the substrate recognition mechanism.  相似文献   

8.
9.
W Krek  E A Nigg 《The EMBO journal》1991,10(2):305-316
The cdc2 kinase is a key regulator of the eukaryotic cell cycle. The activity of its catalytic subunit, p34cdc2, is controlled by cell cycle dependent interactions with other proteins as well as by phosphorylation--dephosphorylation reactions. In this paper, we examine the phosphorylation state of chicken p34cdc2 at various stages of the cell cycle. By peptide mapping, we detect four major phosphopeptides in chicken p34cdc2; three phosphorylation sites are identified as threonine (Thr) 14, tyrosine (Tyr) 15 and serine (Ser) 277. Analysis of synchronized cells demonstrates that phosphorylation of all four sites is cell cycle regulated. Thr 14 and Tyr 15 are phosphorylated maximally during G2 phase but dephosphorylated abruptly at the G2/M transition, concomitant with activation of p34cdc2 kinase. This result suggests that phosphorylation of Thr 14 and/or Tyr 15 inhibits p34cdc2 kinase activity, in line with the location of these residues within the putative ATP binding site of the kinase. During M phase, p34cdc2 is also phosphorylated, but phosphorylation occurs on a threonine residue distinct from Thr 14. Finally, phosphorylation of Ser 277 peaks during G1 phase and drops markedly as cells progress through S phase, raising the possibility that this modification may contribute to control the proposed G1/S function of the vertebrate p34cdc2 kinase.  相似文献   

10.
The human tyrosine phosphatase (p54(cdc25-c)) is activated by phosphorylation at mitosis entry. The phosphorylated p54(cdc25-c) in turn activates the p34-cyclin B protein kinase and triggers mitosis. Although the active p34-cyclin B protein kinase can itself phosphorylate and activate p54(cdc25-c), we have investigated the possibility that other kinases may initially trigger the phosphorylation and activation of p54(cdc25-c). We have examined the effects of the calcium/calmodulin-dependent protein kinase (CaM kinase II) on p54(cdc25-c). Our in vitro experiments show that CaM kinase II can phosphorylate p54(cdc25-c) and increase its phosphatase activity by 2.5-3-fold. Treatment of a synchronous population of HeLa cells with KN-93 (a water-soluble inhibitor of CaM kinase II) or the microinjection of AC3-I (a specific peptide inhibitor of CaM kinase II) results in a cell cycle block in G2 phase. In the KN-93-arrested cells, p54(cdc25-c) is not phosphorylated, p34(cdc2) remains tyrosine phosphorylated, and there is no increase in histone H1 kinase activity. Our data suggest that a calcium-calmodulin-dependent step may be involved in the initial activation of p54(cdc25-c).  相似文献   

11.
Progression through the G1/S transition commits cells to synthesize DNA. Cyclin dependent kinase 2 (CDK2) is the major kinase that allows progression through G1/S phase and subsequent replication events. p27 is a CDK inhibitor (CKI) that binds to CDK2 to prevent premature activation of this kinase. Speedy (Spy1), a novel cell cycle regulatory protein, has been found to prematurely activate CDK2 when microinjected into Xenopus oocytes and when expressed in mammalian cells. To determine the mechanism underlying Spy1-induced proliferation in mammalian cell cycle regulation, we used human Spy1 as bait in a yeast two-hybrid screen to identify interacting proteins. One of the proteins isolated was p27; this novel interaction was confirmed both in vitro, using bacterially expressed and in vitro translated proteins, and in vivo, through the examination of endogenous and transfected proteins in mammalian cells. We demonstrate that Spy1 expression can overcome a p27-induced cell cycle arrest to allow for DNA synthesis and CDK2 histone H1 kinase activity. In addition, we utilized p27-null cells to demonstrate that the proliferative effect of Spy1 depends on the presence of endogenous p27. Our data suggest that Spy1 associates with p27 to promote cell cycle progression through the G1/S transition.  相似文献   

12.
The activity of cyclin-dependent kinase 2 is required for G(1)-S-phase progression of the eukaryotic cell cycle. In this study, we examine the activation of CDK2-cyclin E by constructing a CDK2 that is constitutively targeted to the nucleus. Activation of CDK2 requires the removal of two inhibitory phosphates (Thr-14 and Tyr-15) and the addition of one activating phosphate (Thr-160) by a nuclear localized CDK-activating kinase, which is thought to be constitutively active. Surprisingly, nuclear localized CDK2-NLS and CDK2-NLS(A14,F15), which lacks the inhibitory phosphorylation sites, require serum to become active, despite complexing with expressed cyclin E. We show that inhibition of mitogen-mediated ERK activation by treatment with U0126, a selective MEK inhibitor, or expression of dominant-negative ERK markedly reduces the phosphorylation of Thr-160 and enzymatic activity of both CDK2-NLS constructs. Consistent with a role for ERK in Thr-160 phosphorylation, expression of constitutively active Raf-1 induces Thr-160 phosphorylation of CDK2-NLS in serum-arrested cells, an effect that is blocked by treatment with U0126. Taken together, these data show a new role for ERK in G1 cell cycle progression: In addition to its role in stimulating cyclin D1 expression and nuclear translocation of CDK2, ERK regulates Thr-160 phosphorylation of CDK2-cyclin E.  相似文献   

13.
Inhibition of S/G2 phase CDK4 reduces mitotic fidelity   总被引:2,自引:0,他引:2  
Cyclin-dependent kinase 4 (CDK4)/cyclin D has a key role in regulating progression through late G(1) into S phase of the cell cycle. CDK4-cyclin D complexes then persist through the latter phases of the cell cycle, although little is known about their potential roles. We have developed small molecule inhibitors that are highly selective for CDK4 and have used these to define a role for CDK4-cyclin D in G(2) phase. The addition of the CDK4 inhibitor or small interfering RNA knockdown of cyclin D3, the cyclin D partner, delayed progression through G(2) phase and mitosis. The G(2) phase delay was independent of ATM/ATR and p38 MAPK but associated with elevated Wee1. The mitotic delay was because of failure of chromosomes to migrate to the metaphase plate. However, cells eventually exited mitosis, with a resultant increase in cells with multiple or micronuclei. Inhibiting CDK4 delayed the expression of the chromosomal passenger proteins survivin and borealin, although this was unlikely to account for the mitotic phenotype. These data provide evidence for a novel function for CDK4-cyclin D3 activity in S and G(2) phase that is critical for G(2)/M progression and the fidelity of mitosis.  相似文献   

14.
In eukaryotic cells, genomic DNA is organized into a chromatin structure, which not only serves as the template for DNA-based nuclear processes, but also as a platform integrating intracellular and extracellular signals. Although much effort has been spent to characterize chromatin modifying/remodeling activities, little is known about cell signaling pathways targeting these chromatin modulators. Here, we report that cyclin-dependent kinase 1 (CDK1) phosphorylates the histone H2A deubiquitinase Ubp-M at serine 552 (S552P), and, importantly, this phosphorylation is required for cell cycle progression. Mass spectrometry analysis confirmed Ubp-M is phosphorylated at serine 552, and in vitro and in vivo assays demonstrated that CDK1/cyclin B kinase is responsible for Ubp-M S552P. Interestingly, Ubp-M S552P is not required for Ubp-M tetramer formation, deubiquitination activity, substrate specificity, or regulation of gene expression. However, Ubp-M S552P is required for cell proliferation and cell cycle G2/M phase progression. Ubp-M S552P reduces Ubp-M interaction with nuclear export protein CRM1 and facilitates Ubp-M nuclear localization. Therefore, these studies confirm that Ubp-M is phosphorylated at S552 and identify CDK1 as the enzyme responsible for the phosphorylation. Importantly, this study specifically links Ubp-M S552P to cell cycle G2/M phase progression.  相似文献   

15.
BRCA1 phosphorylation by Aurora-A in the regulation of G2 to M transition   总被引:16,自引:0,他引:16  
Aurora-A/BTAK/STK15 localizes to the centrosome in the G(2)-M phase, and its kinase activity regulates the G(2) to M transition of the cell cycle. Previous studies have shown that the BRCA1 breast cancer tumor suppressor also localizes to the centrosome and that BRCA1 inactivation results in loss of the G(2)-M checkpoint. We demonstrate here that Aurora-A physically binds to and phosphorylates BRCA1. Biochemical analysis showed that BRCA1 amino acids 1314-1863 binds to Aurora-A. Site-directed mutagenesis indicated that Ser(308) of BRCA1 is phosphorylated by Aurora-A in vitro. Anti-phospho-specific antibodies against Ser(308) of BRCA1 demonstrated that Ser(308) is phosphorylated in vivo. Phosphorylation of Ser(308) increased in the early M phase when Aurora-A activity also increases; these effects could be abolished by ionizing radiation. Consistent with these observations, acute loss of Aurora-A by small interfering RNA resulted in reduced phosphorylation of BRCA1 Ser(308), and transient infection of adenovirus Aurora-A increased Ser(308) phosphorylation. Mutation of a single phosphorylation site of BRCA1 (S308N), when expressed in BRCA1-deficient mouse embryo fibroblasts, decreased the number of cells in the M phase to a degree similar to that with wild type BRCA1-mediated G(2) arrest induced by DNA damage. We propose that BRCA1 phosphorylation by Aurora-A plays a role in G(2) to M transition of cell cycle.  相似文献   

16.
17.
We have prepared phosphorylated cyclin-dependent protein kinase 2 (CDK2) for crystallization using the CDK-activating kinase 1 (CAK1) from Saccharomyces cerevisiae and have grown crystals using microseeding techniques. Phosphorylation of monomeric human CDK2 by CAK1 is more efficient than phosphorylation of the binary CDK2-cyclin A complex. Phosphorylated CDK2 exhibits histone H1 kinase activity corresponding to approximately 0.3% of that observed with the fully activated phosphorylated CDK2-cyclin A complex. Fluorescence measurements have shown that Thr160 phosphorylation increases the affinity of CDK2 for both histone substrate and ATP and decreases its affinity for ADP. By contrast, phosphorylation of CDK2 has a negligible effect on the affinity for cyclin A. The crystal structures of the ATP-bound forms of phosphorylated CDK2 and unphosphorylated CDK2 have been solved at 2.1-A resolution. The structures are similar, with the major difference occurring in the activation segment, which is disordered in phosphorylated CDK2. The greater mobility of the activation segment in phosphorylated CDK2 and the absence of spontaneous crystallization suggest that phosphorylated CDK2 may adopt several different mobile states. The majority of these states are likely to correspond to inactive conformations, but a small fraction of phosphorylated CDK2 may be in an active conformation and hence explain the basal activity observed.  相似文献   

18.
The activity of p34cdc2 kinase is regulated in the phases of vertebrate cell cycle by mechanisms of phosphorylation and dephosphorylation. In this paper, we demonstrate that casein kinase II (CKII) phosphorylates p34cdc2 in vivo and in vitro at Ser39 during the G1 phase of HeLa cell division cycle. Human p34cdc2 shows a typical phosphorylation sequence motif site for CKII at Ser39 (ES39EEE). In our experiments, either p34cdc2 expressed and purified from bacteria or p34cdc2 immunoprecipitated from HeLa cells enriched in G1 by elutriation were substrates for in vitro phosphorylation by CKII. Phosphoamino acid analysis, N-chlorosuccinimide mapping, and two-dimensional tryptic mapping of p34cdc2 phosphorylated in vitro were performed to determine the phosphorylation site. A synthetic peptide spanning residues 33-50 of human p34cdc2, including the CKII site, was used to map the site. In addition, phosphorylation at Ser39 also occurs in vivo, since p34cdc2 is phosphorylated during G1 on serine, and its two-dimensional tryptic map shows two phosphopeptides that comigrate exactly with the synthetic peptides used as standard.  相似文献   

19.
The activation of CDK2-cyclin E in late G1 phase has been shown to play a critical role in retinoblastoma protein (pRb) inactivation and G1-S phase progression of the cell cycle. The phosphatidylinositol 3-OH-kinase inhibitor LY294002 has been shown to block cyclin D1 accumulation, CDK4 activity and, thus, G1 progression in alpha-thrombin-stimulated IIC9 cells (Chinese hamster embryonic fibroblasts). Our previous results show that expression of cyclin E rescues S phase progression in alpha-thrombin-stimulated IIC9 cells treated with LY294002, arguing that cyclin E renders CDK4 activity dispensable for G1 progression. In this work we investigate the ability of alpha-thrombin-induced CDK2-cyclin E activity to inactivate pRb in the absence of prior CDK4-cyclin D1 activity. We report that in the absence of CDK4-cyclin D1 activity, CDK2-cyclin E phosphorylates pRb in vivo on at least one residue and abolishes pRb binding to E2F response elements. We also find that expression of cyclin E rescues E2F activation and cyclin A expression in cyclin D kinase-inhibited, alpha-thrombin-stimulated cells. Furthermore, the rescue of E2F activity, cyclin A expression, and DNA synthesis by expression of E can be blocked by the expression of either CDK2(D145N) or RbDeltaCDK, a constitutively active mutant of pRb. However, restoring four known cyclin E-CDK2 phosphorylation sites to RbDeltaCDK renders it susceptible to inactivation in late G1, as assayed by E2F activation, cyclin A expression, and S phase progression. These data indicate that CDK2-cyclin E, without prior CDK4-cyclin D activity, can phosphorylate and inactivate pRb, activate E2F, and induce DNA synthesis.  相似文献   

20.
Cyclin E, a positive regulator of the cell cycle, controls the transition of cells from G(1) to S phase. Deregulation of the G(1)-S checkpoint contributes to uncontrolled cell division, a hallmark of cancer. We have reported previously that cyclin E is overexpressed in breast cancer and such overexpression is usually accompanied by the appearance of low molecular weight isoforms of cyclin E protein, which are not present in normal cells. Furthermore, we have shown that the expression of cyclin E low molecular weight isoforms can be used as a reliable prognostic marker for breast cancer to predict patient outcome. In this study we examined the role of cyclin E in directly activating cyclin-dependent kinase (CDK) 2. For this purpose, a series of N-terminal deleted forms of cyclin E corresponding to the low molecular weight forms detected only in cancer cells were translated in vitro and mixed with cell extracts. These tumor-specific N-terminal deleted forms of cyclin E are able to activate CDK2. Addition of cyclin E into both normal and tumor cell extracts was shown to increase the levels of CDK2 activity, along with an increase in the amount of phosphorylated CDK2. The increase in CDK2 activity was because of cyclin E binding to endogenous CDK2 in complex with endogenous cyclin E, cyclin A, or unbound CDK2. The increase in CDK2 phosphorylation was through a pathway involving cyclin-activating kinase, but addition of cyclin E to an extract containing unphosphorylated CDK2 can still lead to increase in CDK2 activity. Our data suggest that the ability of high levels of full-length and low molecular weight forms of cyclin E to activate CDK2 may be one mechanism that leads to the constitutive activation of cyclin E.CDK2 complexes leading to G(1)/S deregulation and tumor progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号