首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 601 毫秒
1.
Two forms of Ruminococcus flavefaciens FD-1 endoglucanase B, a member of glycoside hydrolase family 44, one with only a catalytic domain and the other with a catalytic domain and a carbohydrate binding domain (CBM), were produced. Both forms hydrolyzed cellotetraose, cellopentaose, cellohexaose, carboxymethylcellulose (CMC), birchwood and larchwood xylan, xyloglucan, lichenan, and Avicel but not cellobiose, cellotriose, mannan, or pullulan. Addition of the CBM increased catalytic efficiencies on both CMC and birchwood xylan but not on xyloglucan, and it decreased rates of cellopentaose and cellohexaose hydrolysis. Catalytic efficiencies were much higher on xyloglucan than on other polysaccharides. Hydrolysis rates increased with increasing cellooligosaccharide chain length. Cellotetraose hydrolysis yielded only cellotriose and glucose. Hydrolysis of cellopentaose gave large amounts of cellotetraose and glucose, somewhat more of the former than of the latter, and much smaller amounts of cellobiose and cellotriose. Cellohexaose hydrolysis yielded much more cellotetraose than cellobiose and small amounts of glucose and cellotriose, along with a low and transient amount of cellopentaose.  相似文献   

2.
The hyperthermophilic archaeon Pyrococcus furiosus can utilize different beta-glucosides, like cellobiose and laminarin. Cellobiose uptake occurs with high affinity (K(m) = 175 nM) and involves an inducible binding protein-dependent transport system. The cellobiose binding protein (CbtA) was purified from P. furiosus membranes to homogeneity as a 70-kDa glycoprotein. CbtA not only binds cellobiose but also cellotriose, cellotetraose, cellopentaose, laminaribiose, laminaritriose, and sophorose. The cbtA gene was cloned and functionally expressed in Escherichia coli. cbtA belongs to a gene cluster that encodes a transporter that belongs to the Opp family of ABC transporters.  相似文献   

3.
A single form of exo-type cellulase (Exo I; MW, 65,000), purified from a Trichoderma viride protease-depressed mutant, HK-75, digested Avicel to cellobiose exowise, and hydrolyzed cellotriose, cellotetraose, and cellopentaose in the strict manner of splitting off by cellobiose units. Exo I, however, hydrolyzed cellohexaose by both cellobiose and cellotriose units. Exo I was proteolyzed by papain into two fragments; GPExo (MW, 9,000) and Exo I' (MW, 56,000). The GPExo intensively adsorbed onto Avicel but did not hydrolyze it. Exo I' had nearly identical activity to that of intact Exo I toward cellooligosaccharides but was almost inert to Avicel in digestion and adsorption. Sequence analysis of N-terminal and C-terminal amino acids showed that GPExo was between Gly435 and Leu496 and Exo I' between Glu1 and Gly434 in Exo I. Exo I therefore consists of two domains, one for adsorption to Avicel, as demonstrated by the Avicel-affinity site, GPExo and the other for the cleavage of glycosidic linkages as demonstrated in Exo I'.  相似文献   

4.
An EcoRI chromosomal DNA fragment of Ruminococcus albus F-40 that conferred endoglucanase activity on Escherichia coli was cloned. An open reading frame (ORF1) and another incomplete reading frame (ORF2) were found in the EcoRI fragment. The ORF2 was completed using inverse PCR genome walking technique. ORF1 and ORF2, which confront each other, encoded cellulases belonging to families 5 and 9 of the glycoside hydrolases and were designated cel5D and cel9A respectively. The cel5D gene encodes 753 amino acids with a deduced molecular weight of 83,409. Cel5D consists of a signal peptide of 24 amino acids, a family-5 catalytic module, a dockerin module, and two family-4 carbohydrate-binding modules (CBMs). The cel9A gene encodes 936 amino acids with a deduced molecular weight of 104,174, consisting of a signal peptide, a family-9 catalytic module, a family-3 CBM, and a dockerin module. The catalytic module polypeptide (rCel5DCat) derived from Cel5D was constructed, expressed, and purified from a recombinant E. coli. The truncated enzyme hydrolyzed cellohexaose, cellopentaose, and cellotetraose to yield mainly cellotriose and cellobiose with glucose as a minor product, but the enzyme was less active toward cellotriose and not active toward cellobiose, suggesting that this enzyme is a typical endoglucanase. rCel5DCat had a Km of 3.9 mg/ml and a Vmax of 37.2 micromol/min/mg for carboxymethycellulose.  相似文献   

5.
The cloning, expression and nucleotide sequence of a 3.74 kb DNA segment on pLS215 containing a beta-glucosidase gene (bglA) from Butyrivibrio fibrisolvens H17c was investigated. The B. fibrisolvens bglA open reading frame (ORF) of 2490 bp encoded a beta-glucosidase of 830 amino acid residues with a calculated Mr of 91,800. In Escherichia coli C600(pLS215) cells the beta-glucosidase was localized in the cytoplasm and these cells produced an additional protein with an apparent Mr of approximately 94,000. The bglA gene was expressed from its own regulatory region in E. coli and a single mRNA initiation point was identified upstream of the bglA ORF and adjacent to a promoter consensus sequence. The primary structure of the beta-glucosidase showed greater than 40% similarity with a domain of 237 amino acids present in the beta-glucosidases of Kluyveromyces fragilis and Clostridium thermocellum. The B. fibrisolvens beta-glucosidase hydrolysed cellobiose to a limited extent, cellotriose to cellobiose and glucose, and cellotetraose and cellopentaose to predominantly glucose.  相似文献   

6.
The gene for a 104-kDa exocellulase, Cel48A, formerly E6, was cloned from Thermobifida fusca into Escherichia coli and Streptomyces lividans. The DNA sequence revealed a type II cellulose-binding domain at the N-terminus, followed by a FNIII-like domain and ending with a glycosyl hydrolase Family 48 catalytic domain. The enzyme and catalytic domain alone were each expressed in and purified from S. lividans and had very low catalytic activity on swollen cellulose, carboxymethyl cellulose, bacterial microcrystalline cellulose and filter paper. However, in synergistic assays on filter paper, the addition of Cel48A to a balanced mixture of T. fusca endocellulase and exocellulase increased the specific activity from 7.9 to 11.7 micromol cellobiose.min-1.mL-1, more than 15-fold higher than any single enzyme alone. Cel48A retained > 50% of its maximum activity from pH 5 to 9 and from 40 to 60 degrees C. Using SWISSMODEL, the amino-acid sequence of the Cel48Acd was modeled to the known structure of Clostridium cellulolyticum CelF. Family 48 enzymes are remarkably homologous at 35% identity for all their catalytic domains and some of the properties of the 10 members are discussed.  相似文献   

7.
Five endoglucanases (1,4-beta-D-glucan-glucanohydrolase, EC 3.2.1.4) were isolated from Fusarium lini. Endo I and II were purified by preparative gel electrophoresis and Endo III, IV, and V were purified in a single-step procedure involving preparative flat-bed isoelectric focusing. All the endoglucanases were homogenous on disk gel electrophoresis and analytical isoelectric focusing in polyacrylamide gel. The pi values were between 6 and 6.6 for Endo III, IV, and V; for Endo I, the pi value was 8. The molecular weights of the enzymes were between 4 x 10(4) and 6.5 x 10(4). The K(m) values for endoglucanases using carboxymethyl cellulose (CM-cellulose) as the substrate were 2-12 mg/mL. The specificity of the enzymes was restricted to beta-1, 4-linkages. All the enzymes showed activity towards D-xylan. The endoglucanases had high viscosity reducing activity with CM-cellulose. Striking synergism was observed for the hydrolysis of CM-cellulose by endoglucanases. Endo II, IV, and V attacked cellopentaose and cellotetraose more readily than cellotriose. Endo II and V hydrolyzed cellotriose, cellotetraose, and cellopentaose, yielding a mixture of cellobiose with a trace amount of glucose; endo IV produced only cellobiose.  相似文献   

8.
Fifteen mutant genes in six loop residues and eight mutant genes in five conserved noncatalytic active site residues of Thermobifida fusca Cel6B were constructed, cloned and expressed in Escherichia coli or Streptomyces lividans. The mutant enzymes were assayed for catalytic activity on carboxymethyl cellulose (CMC), swollen cellulose (SC), filter paper (FP), and bacterial microcrystalline cellulose (BMCC) as well as cellotetraose, cellopentaose, and 2, 4-dinitrophenyl-beta-D-cellobioside. They were also assayed for ligand binding, enzyme processivity, thermostability, and cellobiose feedback inhibition. Two double Cys mutations that formed disulfide bonds across two tunnel forming loops were found to significantly weaken binding to ligands, lower all activities, and processivity, demonstrating that the movement of these loops is important but not essential for Cel6B function. Two single mutant enzymes, G234S and G284P, had higher activity on SC and FP, and the double mutant enzyme had threefold and twofold higher activity on these substrates, respectively. However, synergism with endocellulase T. fusca Cel5A was not increased with these mutant enzymes. All mutant enzymes with lower activity on filter paper, BMCC, and SC had lower processivity. This trend was not true for CMC, suggesting that processivity in Cel6B is a key factor in the hydrolysis of insoluble and crystalline cellulose. Three mutations (E495D, H326A and W329C) located near putative glycosyl substrate subsites -2, +1 and +2, were found to significantly increase resistance to cellobiose feedback inhibition. Both the A229V and L230C mutations specifically decreased activity on BMCC, suggesting that BMCC hydrolysis has a different rate limiting step than the other substrates. Most of the mutant enzymes had reduced thermostability although Cel6B G234S maintained wild-type thermostability. The properties of the different mutant enzymes provide insight into the catalytic mechanism of Cel6B.  相似文献   

9.
A novel beta-glucosidase gene, bglA, was isolated from uncultured soil bacteria and characterized. Using genomic libraries constructed from soil DNA, a gene encoding a protein that hydrolyzes a fluorogenic analog of cellulose, 4-methylumbelliferyl beta-D-cellobioside (MUC), was isolated using a microtiter plate assay. The gene, bglA, was sequenced using a shotgun approach, and expressed in E. coli. The deduced 55-kDa amino acid sequence for bglA showed a 56% identity with the family 1 glycosyl hydrolase Chloroflexus aurantiacus. Bg1A included two conserved family 1 glycosyl hydrolase regions. When using p-nitrophenyl-beta-D-glucoside (pNPG) as the substrate, the maximum activity of the purified beta-glucosidase exhibited at pH 6.5 and 55 degrees C, and was enhanced in the presence of Mn2+. The Km and Vmax values for the purified enzyme with pNPG were 0.16 mM and 19.10 micromol/min, respectively. The purified BglA enzyme hydrolyzed both pNPG and p-nitrophenyl-beta-D-fucoside. The enzyme also exhibited substantial glycosyl hydrolase activities with natural glycosyl substrates, such as sophorose, cellobiose, cellotriose, cellotetraose, and cellopentaose, yet low hydrolytic activities with gentiobiose, salicin, and arbutin. Moreover, Bg1A was able to convert the major ginsenoside Rb1 into the pharmaceutically active minor ginsenoside Rd within 24 h.  相似文献   

10.
《Insect Biochemistry》1986,16(6):929-932
The cellulase from the termite Nasutitermes walkeri consists of two enzymes. Each has broad specificity with predominantly one activity. One enzyme is an endo-gb-1,4-glucanase (EC 3.2.1.4) which predominantly cleaves cellulose randomly to glucose, cellobiose and cellotriose. It hydrolyses cellotetraose to cellobiose but will not hydrolyse cellobiose or cellotriose. The second enzyme component is a β-1,4-glucosidase (EC 3.2.1.21) as its major activity is to hydrolyse cellobiose, cellotriose and cellotetraose to glucose; it has some exoglucosidase activity as glucose is the only product produced from cellulose. Its cellobiase activity is inhibited by glucono-δ-lactone.  相似文献   

11.
Two beta-glycosidases (BG) (Mr 47,000 and Mr 50,000) were purified from Spodoptera frugiperda (Lepidoptera: Noctuidae) midguts. These two polypeptides associate or dissociate depending on the medium ionic strength. The Mr 47,000 BG probably has two active sites. One of the putative active sites (cellobiase site) hydrolyses p-nitrophenyl beta-D-glucoside (NPbetaGlu) (79% of the total activity in saturated enzyme), cellobiose, amygdalin and probably also cellotriose, cellotetraose and cellopentaose. The cellobiase site has four subsites for glucose residue binding, as can be deduced from cellodextrin cleavage data. The enzymatic activity in this site is abolished after carbodiimide modification at pH 6.0. Since the inactivation is reduced in the presence of cellobiose, the results suggest the presence of a carboxylate as a catalytic group. The other active site of Mr 47,000 BG (galactosidase site) hydrolyses p-nitrophenyl beta-D-galactoside (NPbetaGal) better than NPbetaGlu, cleaves glucosylceramide and lactose and is unable to act on cellobiose, cellodextrins and amygdalin. This active site is not modified by carbodiimide at pH 6.0. The Mr 47,000 BG N-terminal sequence has high identity to plant beta-glycosidases and to mammalian lactase-phlorizin hydrolase, and contains the QIEGA motif, characteristic of the family of glycosyl hydrolases. The putative physiological role of this enzyme is the digestion of glycolipids (galactosidase site) and di- and oligosaccharides (cellobiase site) derived from hemicelluloses, thus resembling mammalian lactase-phlorizin hydrolase.  相似文献   

12.
Growth of the ruminal bacteria Fibrobacter succinogenes S85, Ruminococcus flavefaciens FD-1, and R. albus 7 followed Monod kinetics with respect to concentrations of individual pure cellodextrins (cellobiose, cellotriose, cellotetraose, cellopentaose, and cellohexaose). Under the conditions tested, R. flavefaciens FD-1 possesses the greatest capacity to compete for low concentrations of these cellodextrins.  相似文献   

13.
Trichoderma reesei produces five known endoglucanases. The most studied are Cel7B (EG I) and Cel5A (EG II) which are the most abundant of the endoglucanases. We have performed a characterisation of the enzymatic properties of the less well-studied endoglucanases Cel12A (EG III), Cel45A (EG V) and the catalytic core of Cel45A. For comparison, Cel5A and Cel7B were included in the study. Adsorption studies on microcrystalline cellulose (Avicel) and phosphoric acid swollen cellulose (PASC) showed that Cel5A, Cel7B, Cel45A and Cel45Acore adsorbed to these substrates. In contrast, Cel12A adsorbed weakly to both Avicel and PASC. The products formed on Avicel, PASC and carboxymethylcellulose (CMC) were analysed. Cel7B produced glucose and cellobiose from all substrates. Cel5A and Cel12A also produced cellotriose, in addition to glucose and cellobiose, on the substrates. Cel45A showed a clearly different product pattern by having cellotetraose as the main product, with practically no glucose and cellobiose formation. The kinetic constants were determined on cellotriose, cellotetraose and cellopentaose for the enzymes. Cel12A did not hydrolyse cellotriose. The k(Cat) values for Cel12A on cellotetraose and cellopentaose were significantly lower compared with Cel5A and Cel7B. Cel7B was the only endoglucanase which rapidly hydrolysed cellotriose. Cel45Acore did not show activity on any of the three studied cello-oligosaccharides. The four endoglucanases' capacity to hydrolyse beta-glucan and glucomannan were studied. Cel12A hydrolysed beta-glucan and glucomannan slightly less compared with Cel5A and Cel7B. Cel45A was able to hydrolyse glucomannan significantly more compared with beta-glucan. The capability of Cel45A to hydrolyse glucomannan was higher than that observed for Cel12A, Cel5A and Cel7B. The results indicate that Cel45A is a glucomannanase rather than a strict endoglucanase.  相似文献   

14.
Two highly purified cellulases [EC 3.2.1.4], II-A, and II-B, were obtained from the cellulase system of Trichoderma viride. Both cellulases split cellopentaose retaining the beta-configuration of the anomeric carbon atoms in the hydrolysis products at both pH 3.5 and 5.0. The Km values of cellulases II-A and II-B for cellotetraose were different, but their Vmax values were similar and those for cellooligosaccharides increased in parallel with chain length. Both cellulases produced predominantly cellobiose and glucose from various cellulosic substrates as well as from higher cellooligosaccharides. Cellulase II-A preferentially attacked the holoside linkage of rho-nitrophenyl beta-D-cellobioside, whereas cellulase II-B attacked mainly the aglycone linkage of this cellobioside. Both cellulases were found to catalyze the synthesis of cellotriose from rho-nitrophenyl beta-D-cellobioside by transfer of a glucosyl residue, possibly to cellobiose produced in the reaction mixture. They were also found to catalyze the rapid synthesis of cellotetraose from cellobiose, with accompanying formation of cellotriose and glucose, which seemed to be produced by secondary random hydrolysis of the cellotetraose produced. The capacity to synthesize cellotetraose from cellobiose appeared to be greater with cellulase II-B than with cellulase II-A.  相似文献   

15.
Isothermal crystallization from the glassy state of D-glucose and cellulose oligosaccharides (e.g., cellobiose, cellotriose, and cellotetraose) has been studied by differential scanning calorimetry. The crystallization of amorphous D-glucose and oligosaccharides was very difficult in the absence of traces of water. Amorphous cellobiose and cellotetraose crystallized far more rapidly than amorphous D-glucose and cellotriose. The activation energy for the crystallization of cellobiose and cellotetraose was approximately 10-12 kJ. mol(-1), while that for D-glucose and cellotriose was approximately 1-2 kJ. mol(-1). An odd-even effect seemed to be associated with the crystallization process of these saccharides.  相似文献   

16.
An endoglucanase encoded by a gene of Clostridium josui was expressed in Escherichia coli and purified. The homogeneous enzyme, with a molecular weight of 39,000, revealed maximum endoglucanase activity at pH 7.2 to 7.5 and a temperature of 65 to 70 degrees C. The enzyme was stable at a temperature lower than 45 degrees C (the growth temperature of the bacterium) in the range of pH 4.5 to 9.0. The amino acid sequence of the enzyme at the N terminus was Val-Glu-Glu-Asp-Ser-Ser-His-Leu-Ile-Thr-Asn-Gln-Ala-Lys-Lys----. The enzyme hydrolyzed cellotetraose to cellobiose and then transferred cellobiose to the residual cellotetraose. The resulting cellohexaose was cleaved to cellotriose.  相似文献   

17.
An endoglucanase encoded by a gene of Clostridium josui was expressed in Escherichia coli and purified. The homogeneous enzyme, with a molecular weight of 39,000, revealed maximum endoglucanase activity at pH 7.2 to 7.5 and a temperature of 65 to 70 degrees C. The enzyme was stable at a temperature lower than 45 degrees C (the growth temperature of the bacterium) in the range of pH 4.5 to 9.0. The amino acid sequence of the enzyme at the N terminus was Val-Glu-Glu-Asp-Ser-Ser-His-Leu-Ile-Thr-Asn-Gln-Ala-Lys-Lys----. The enzyme hydrolyzed cellotetraose to cellobiose and then transferred cellobiose to the residual cellotetraose. The resulting cellohexaose was cleaved to cellotriose.  相似文献   

18.
19.
As part of an ongoing enzyme discovery program to investigate the properties and catalytic mechanism of glycoside hydrolase family 12 (GH 12) endoglucanases, a GH family that contains several cellulases that are of interest in industrial applications, we have solved four new crystal structures of wild-type Humicola grisea Cel12A in complexes formed by soaking with cellobiose, cellotetraose, cellopentaose, and a thio-linked cellotetraose derivative (G2SG2). These complex structures allow mapping of the non-covalent interactions between the enzyme and the glucosyl chain bound in subsites -4 to +2 of the enzyme, and shed light on the mechanism and function of GH 12 cellulases. The unhydrolysed cellopentaose and the G2SG2 cello-oligomers span the active site of the catalytically active H.grisea Cel12A enzyme, with the pyranoside bound in subsite -1 displaying a S31 skew boat conformation. After soaking in cellotetraose, the cello-oligomer that is found bound in site -4 to -1 contains a beta-1,3-linkage between the two cellobiose units in the oligomer, which is believed to have been formed by a transglycosylation reaction that has occurred during the ligand soak of the protein crystals. The close fit of this ligand and the binding sites occupied suggest a novel mixed beta-glucanase activity for this enzyme.  相似文献   

20.
Water-soluble cellodextrins were prepared from microcrystalline cellulose by using fuming hydrochloric acid and acetone precipitation. This cellodextrin preparation contained only trace amounts of glucose and cellobiose and was primarily composed of cellotetraose and cellopentaose. When various species of cellulolytic and noncellulolytic bacteria were cultured with cellodextrins, their growth rates and maximal optical densities were in most cases similar to those observed with cellobiose. Time course samplings and analyses of cellodextrins by high-pressure liquid chromatography indicated that longer-chain cellodextrins were hydrolyzed extracellularly to cellobiose and cellotriose. Cellodextrin utilization by noncellulolytic rumen bacteria and extracellular hydrolysis of cellodextrins increase the possibility that cross-feeding occurs in the rumen and help to explain the high numbers of noncellulolytic bacteria in ruminants fed fibrous diets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号