首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 589 毫秒
1.
EighteenBradyrhizobium spp. strains, fourRhizobium spp. strains and oneAzorhizobium caulinodans strain were grown under Fe limitation and assayed for siderophore production. It was further assessed if Fe accumulation in two groundnut cultivars was influenced by inoculant strain or nitrate fertilisation. Growth ofBradyrhizobium spp. strains nodulating groundnut was slow with mean generation times from 11–24 h. All strains, except MAR 967, showed a reduced growth rate when deprived of Fe; none of the strains showed starvation at 1 M Fe. In the CAS (chrome azurol S)-agar assay, all strains, which formed colonies, produced siderophores as visualised by orange halos around the colonies on blue plates.Bradyrhizobium strains produced much smaller halos than the referenceRhizobium meliloti strain. In the CAS-supernatant assay, all strains, except MAR 967, gave positive responses (measured as absorbance at 630 nm) when supernatants of Fe-depleted cultures were assayed with CAS-indicator complex in comparison with Fe-supplemented cultures. Responses of all fourRhizobium spp. strains were large, while responses of allBradyrhizobium strains, exceptB. japonicum MAR 1491 (USDA 110), were small and mostly insignificant. A small response, i.e. a low Fe-scavenging ability, implies either the production of small quantities of siderophores or the production of low affinity siderophores. Among theBradyrhizobium strains, MAR 1574 and MAR 1587 gave the largest responses taken over the two assays. Fe accumulation in groundnut cultivar Falcon was seven times larger than in cultivar Natal Common. No correlation was found between the quantity of nodule tissue and Fe accumulation, making it unlikely that bacteroids are involved in Fe acquisition by groundnuts. Nitrate-fertilised plants accumulated significantly more Fe, suggesting involvement of nitrate reductase in Fe assimilation in groundnut. The two most successful Fe-scavengingBradyrhizobium spp. strains were also the most effective in nodulating groundnut, the reverse also being true. Strain MAR 967, with the lowest Fe requirement, produced the largest nodule dry weight. These data indicate that improved Fe scavenging properties and/or reduced Fe requirement improve rhizospheric growth and with that nodulation effectiveness.  相似文献   

2.
This work was designed to determine the role of the acidity and aluminium stress in the selection of partners in the Acacia symbioses with relevance to the persistence of the microsymbiont Bradyrhizobium in the soil and the growth and nodulation of the host plant respectively. Fifteen strains of Bradyrhizobium from Acacia mangium and Faidherbia albida formed a very homogenous acid tolerant group as indicated by their ability to grow better in a medium at pH 4.5 than in a medium at pH 6.8. By contrast, a growth experiment using an acid liquid media (pH 4.5), containing different concentrations of aluminium successfully identified strains sensitive to aluminium toxicity and those able to grow even in the presence of 100 M AlCl3.Our results suggest that high amounts of aluminium in the soil rather than acidity (pH 4.5) were a major soil factor for selection of Bradyrhizobium strains capable of establishing a permanently high population under natural conditions.Unlike the behaviour of the microsymbiont, growth and nodulation of Acacia mangium and Faidherbia albida were not affected by aluminium, even at 100 M, but they might be significantly affected by medium acidity (pH 4.5) depending on plant provenances. It is therefore suggested that ability of the host plant to tolerate acidity stress should be taken into account first when screening effective Acacia-Bradyrhizobium combinations for use in afforestation trials.  相似文献   

3.
Effects of inoculating four Arachis hypogaea ssp. fastigiata cultivars with 17 Bradyrhizobium spp. strains were studied in a glasshouse experiment using a sandy soil devoid of an indigenous Bradyrhizobium population. Firstly, a wide range of parameters, indicative of symbiotic performance, were assessed for their influence on seed yield, by correlation and statistical analyses. It was found that nodule dry weight and leaf area were relevant parameters concerning seed yield. Secondly, the effects of host and strain genotype on those parameters were described.Variations in nodule dry weight did not have an effect on seed yield, except for cultivar Natal Common at lower nodule dry weight values. Therefore, it was concluded that the quantity of nitrogen fixing tissue met the demand for combined nitrogen and did not limit seed yield. This conclusion was further supported by the observation that at low nodule numbers per plant the nodule size increased to generate sufficient nitrogen fixing tissue.Leaf area, which comprises components for both photosynthetic capacity and plant development, was found to correlate well with seed yield. An increase in leaf area resulted in significant seed yield increases for all three spanish-type cultivars, but not for the valencia-type cultivar. Leaf area, thus, appeared as a factor limiting seed yield of spanish-type groundnuts.Cultivar performance concerning seed yield was significantly better for Natal Common compared to the other three cultivars, while Natal Common had a significantly lower plant (biomass excluding seed) dry weight value.Inoculation with different strains of Bradyrhizobium resulted in significantly different nodule dry weight values, but hardly led to significant differences in seed yield. This agreed with the finding that the amount of nitrogen fixing tissue appeared not to limit the availability of combined nitrogen.A large quantity of nitrogen was partitioned to the groundnut seeds: 62% to 76% of total accumulated nitrogen was located in the seeds.This study showed that testing for symbiotic effectiveness in the groundnut Bradyrhizobium symbiosis should include assessment of final (seed and biomass) yield, because parameters measured at stages prior to maturity, like nodulation parameters, may lead to flawed effectiveness ratings.  相似文献   

4.
Five A. mangium seedlings of different shoot lengths were selected from a 600-seed screening experiment and micropropagated. Two-week-old rooted microcuttings of the 5 micropropagated clones were inoculated with 3 specific Bradyrhizobium spp. strains in 15 combinations. After 5 months of growth, nodule dry weight and shoot dry weight data showed significant effects of clone and Bradyrhizobium spp. strain. Clones RR-G1 and IR-M2 and Bradyrhizobium sp. Aust13c resulted in the highest dry-matter production and most efficient nodulation. No interaction was observed between clone and Bradyrhizobium spp. strain, which indicates that the Bradyrhizobium spp. strain and the host plant can be selected separately.  相似文献   

5.
Summary Greenhouse experiments were done with two purposes: (1) to identify strains of rhizobia effective and acid-tolerant in symbiosis withLablab purpureus, and (2) to determine whether soil acidity or the symbiotic condition increased the phosphate requirement for growth.Five rhizobial strains were tested in one neutral soil, two acid soils, and the two acid soils limed to pH 6.6. In the neutral and limed soils, three of the strains were effective (CB1024, CB756, TAL169), but only two strains (CB756, TAL169) remained effective in acid soil.Strain CB756 and plus-N treatments were further compared in a factorial trial involving combinations of five levels of P with lime, no lime and CaCl2 treatments, applied to an acid soil. Some of the treatments were also applied to plants inoculated with CB1024. Between the N-fertilized and CB756 treatments there was no clear difference in growth response to applied P, and the critical internal concentration of P for 95% of maximal growth was the same (0.22% shoot dry weight). Increasing P beyond levels needed for maximal growth increased nodulation and N concentration in plants inoculated with CB756. It lowered N concentration in N-fertilized plants. There was evidence suggesting that the P requirement of symbiotic plants increased if the soil was acid, or if CB756 were replaced by CB1024 as microsymbiont; but the critical statistical interactions were not significant.  相似文献   

6.
In areas with a short growing season the poor adaptability of soybean [Glycine max Meer. (L.)] to cool soil conditions is considered the primary yield limiting factor. Soybean requires temperatures in the 25 to 30°C range for optimum N2-fixation and yield. Field studies were conducted in 1990 and 1991 at Montreal, Quebec to determine whether adaptability to cool soil conditions, with respect to earlier symbiosis establishment and function, existed among either Bradyrhizobium strains or soybean genotypes. An early maturing isoline of the soybean cultivar Evans and the cultivar Maple Arrow were inoculated with one of four strains isolated from the cold soils of Hakkaido, northern Japan, or the commercially used strains 532C or USDA110, at two planting dates. Plot biomass and nodulation were assessed at seedling (V2), and flowering(R2) growth stages and harvest maturity. Soybean genotypes did not differ for pre-flowering nodulation or N2-fixation in the cool spring conditions of the first year. Seasonal N2-fixation rates were also determined at the final harvest by the N-balance and 15N-isotope dilution methods. Significantly higher symbiotic activity was found for two of the four Hakkaido strains and was reflected in higher final soybean seed yield and total N2-fixation for the growing season, as compared to the two commercial strains. Planting 14 days earlier resulted in greater early vegetative and total seasonal N2 fixation and yield in the second year when soil temperatures were warmer, emphasizing the need for the development of soybean-Bradyrhizobium combinations superior in nodule development and function under cool soil conditions.  相似文献   

7.
Summay Soil samples were taken from 48 fields in the southern part of Thailand in which either bambara groundnut (Vigna subterranea) or groundnut (Arachis hypogeae) had been planted. Bacillus spp. were isolated using soil dilution plates and heat treatment to screen for endospore-producing bacteria. Among 342 Bacillus spp. isolates tested, 168 isolates were not antagonistic to Bradyrhizobium sp. strain NC-92 using dual culture technique. Further testing found 16 isolates of Bacillus spp. had the ability to inhibit mycelial growth of Rhizoctonia solani, a causal agent of leaf blight of bambara groundnut. Among these isolates, Bacillus spp. isolate TRV 9-5-2 had the greatest activity in anti-microbial tests against R. solani. This isolate was later identified as B. firmus. A powder formulation of B. firmus was developed by mixing bacterial endospores, talcum, sodium carboxymethylcellulose (SCMC) and polyvinylpyrolidone (PVP). The formulations contained bacterial levels ranging from 108 to 1010 c.f.u./g and the viability of bacteria in all formulations remained high after 1 year storage at room temperature (26–32 °C). All formulations showed satisfactory effectiveness in vitro in suppressing mycelial growth of R. solani using dual culture technique. The application of formulations as seed treatment showed that these formulations did not cause abnormality of seedling shape and had no effect on the germination of bambara groundnut seeds.  相似文献   

8.
Measurements of multiplication in liquid culture indicated that fast-growing Lotus rhizobia (Rhizobium loti) were tolerant of acidity and aluminium (at least 50 μM A1 at pH 4.5). Slow-growing Lotus rhizobia (Bradyrhizobium sp. (Lotus)) were less tolerant of acidity but equally tolerant of A1. Both genera were able to nodulateLotus pedunculatus in an acid soil (pH 4.1 in 0.01M CaCl2) and the slow-growing strains were more effective than the fast-growing strains in this soil over 30 days.  相似文献   

9.
In the present study, a total of 154 bacterial strains isolated from nodules of eighteen Vicia species mainly grown in the temperate Chinese provinces were characterized by ARDRA, ITS PCR–RFLP, BOX-PCR, sequencing of 16S rDNA, nodC, nifH, atpD and glnII, and nodulation tests. The results demonstrated that most of the R. leguminosarum strains were effective microsymbionts of the wild Vicia species, while genomic species related to Rhizobium gallicum, Mesorhizobium huakuii, Ensifer meliloti and Bradyrhizobium spp. were symbiotic bacteria occasionally nodulating with Vicia species. In addition, fourteen strains related to Agrobacterium, Phyllobacterium, Ensifer, Shinella and R. tropici, as well as 22 strains of R. leguminosarum might be nodule endophytes without symbiotic genes. Diverse symbiotic gene lineages were found among the test strains and a strong association was found among the symbiotic gene types and genomic species, indicating the absence of lateral gene transfer. These results greatly enlarged the rhizobial spectrum of Vicia species. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Abstract Two strains of Bradyrhizobium sp., Aust 13C and Aust 11C, were dually or singly inoculated with an ectomycorrhizal fungus, Pisolithus albus to assess the interactions between ectomycorrhizal symbiosis and the nodulation process in glasshouse conditions. Sequencing of strains Aust 13C and Aust 11C confirmed their previous placement in the genus Bradyrhizobium. After 4 months culture, the ectomycorrhizal symbiosis promoted plant growth and the nodulation process of both Bradyrhizobium strains, singly or dually inoculated. PCR/RFLP analysis of the nodules randomly collected in each treatment with Aust 13C and/or Aust 11C: (1) showed that all the nodules exhibited the same patterns as those of the Bradyrhizobium strains, and (2) did not detect contaminant rhizobia. When both Bradyrhizobium isolates were inoculated together, but without P. albus IR100, Aust 11C was recorded in 13% of the treated nodules compared to 87% for Aust 13C, whereas Aust 11C and Aust 13C were represented in 20 and 80% of the treated nodules, respectively, in the ectomycorrhizal treatment. Therefore Aust 13C had a high competitive ability and a great persistence in soil. The presence of the fungus did not significantly influence the frequencies of each Bradyrhizobium sp. root nodules. Although the mechanisms remain unknown, these results showed that the ectomycorrhizal and biological nitrogen-fixing symbioses were very dependent on each other. From a practical point of view, the role of ectomycorrhizal symbiosis is of great importance to N2 fixation and, consequently, these kinds of symbiosis must be associated in any controlled inoculation.  相似文献   

11.
Summary Black alder seedlings were grown from seed for 7 weeks in six soils limed to various pH levels and inoculated withFrankia in two inoculation-seeding time combinations (inoculated and seeded concurrently; inoculated then seeded 5 weeks after inoculation). Three mine soils and three non-mine soils were used. Soil pHs in the study ranged from 3.6 to 7.6. In the second inoculation-seeding time combination, a series of soil samples at each of the pH levels below 7.0 were relimed to pH 7.0 immediately prior to seeding. The purpose of the study was to examine the effects of soil acidity on the nodulation of black alder byFrankia and the viability ofFrankia in acid soils. Based on the average number of nodules established per seedling, soil pH was determined to be a significant factor affecting nodulation in the mine soils. The highest levels of nodulation occurred between soil pH 5.5 and 7.2. Below pH 5.5, nodulation was reduced. There was also evidence of decreased viability of the endophyte below pH 4.5.  相似文献   

12.
Rhizobacteria belonging to Bacillus sp. were isolated from the rhizosphere of green gram (Vigna radiata). Seed inoculation with the rhizobacteria showed stunting effect on root growth whereas four Bacillus strains caused stimulation of shoot growth at both 4 and 7 d of observations. Coinoculation of some Bacillus strains with effective Bradyrhizobium strain S24 resulted in enhanced nodulation and plant growth of green gram. The shoot dry mass (ratio to uninoculated control) varied from 1.32 to 6.33 at day 30 and from 1.28 to 3.55 at day 40 of plant growth. Nodule promoting effect after 40 d of plant growth was observed with majority of Bacillus strains except for MRS9 and MRS26. Maximum gains in nodulation, nitrogenase activity and plant growth were observed with Bacillus strains MRS12, MRS18, MRS22 and MRS27 after 40 d of plant growth, suggesting the usefulness of introduced rhizobacteria in improving crop productivity.  相似文献   

13.
Main nodulation signal molecules in the peanut–bradyrhizobia interaction were examined. Flavonoids exuded by Arachis hypogaea L. cultivar Tegua were genistein, daidzein and chrysin, the latest being released in lower quantities. Thin layer chromatography analysis from genistein-induced bacterial cultures of three peanut bradyrhizobia resulted in an identical Nod factor pattern, suggesting low variability in genes involved in the synthesis of these molecules. Structural study of Nod factor by mass spectrometry and NMR analysis revealed that it shares a variety of substituents with the broad-host-range Rhizobium sp. NGR234 and Bradyrhizobium spp. Nodulation assays in legumes nodulated by these rhizobia demonstrated differences between them and the three peanut bradyrhizobia. The three isolates were classified as Bradyrhizobium sp. Their fixation gene nifD and the common nodulation genes nodD and nodA were also analyzed. Accession numbers: AY427207, EF202193, EF158295 (16S rRNA gene of strains NLH25, NOD31 and NDEHE, respectively); DQ295199, DQ295200, DQ295201 (Partial nifD gene sequences of strains NLH25, NOD31 and NDEHE, respectively).  相似文献   

14.
【目的】了解盐渍土野大豆根瘤菌的多样性,筛选具有耐盐促生作用的菌株,为栽培大豆耐盐菌剂的开发提供菌种资源。【方法】采用传统培养方法从滨海盐渍土野大豆中分离根瘤菌,评价菌株的促生特性,并验证其对野大豆和栽培大豆的促生效果。【结果】从野大豆根和根瘤样品中分离出87株根瘤菌,主要为中华根瘤菌属(Sinorhizobium)、根瘤菌属(Rhizobium)和慢生根瘤菌属(Bradyrhizobium)。测定了24株代表性菌株的促生特性,发现有16株根瘤菌具有产吲哚-3-乙酸(indole-3-acetic acid, IAA)能力,6株能够产生1-氨基环丙烷-1-羧酸(1-amino-cyclopropane-1- carboxylic, ACC)脱氨酶,16株具有溶磷活性,6株能够产生铁载体。根据以上促生特性,选择了11株优良根瘤菌进行野大豆促生和结瘤能力评价,发现美洲中华根瘤菌(Sinorhizobium americanus) DL3的性能优于其他菌株。最后,通过盆栽试验检测了菌株DL3对野大豆和栽培大豆耐盐能力的影响,发现菌株DL3在盐胁迫下能促进野大豆和大豆的生长,同时,降低了叶片脯氨酸水平,缓解了植物的盐胁迫程度。【结论】菌株DL3在提高植物耐盐性方面具有一定的作用,对实现大豆的盐碱地种植具有重要的理论意义和实践价值。  相似文献   

15.
Summary Laboratory prescreening ofRhizobium trifolii for acid tolerance, based upon the ability of rhizobia to grow in acid media (pH 4.2) containing Al (15 M), was successful for the selection of strains capable of survival in acid soil.Both sterile and non-sterile soils of varying acidity were inoculated with several strains ofR. trifolii.Acid tolerant strains generally had significantly higher populations at every sample period than an acid sensitive strain. Amelioration of soil acidity by liming improved persistence of all strains. Soil sterilization by autoclaving adversely affected survival of all strains at each soil acidity level.Paper Number 8766 of the Journal Series, North Carolina Agricultural Research Service, Raleigh, NC 27650, USA.  相似文献   

16.
As an introduced plant, Lablab purpureus serves as a vegetable, herbal medicine, forage and green manure in China. In order to investigate the diversity of rhizobia associated with this plant, a total of 49 rhizobial strains isolated from ten provinces of Southern China were analyzed in the present study with restriction fragment length polymorphism and/or sequence analyses of housekeeping genes (16S rRNA, IGS, atpD, glnII and recA) and symbiotic genes (nifH and nodC). The results defined the L. purpureus rhizobia as 24 IGS-types within 15 rrs-IGS clusters or genomic species belonging to Bradyrhizobium, Rhizobium, Ensifer (synonym of Sinorhizobium) and Mesorhizobium. Bradyrhizobium spp. (81.6%) were the most abundant isolates, half of which were B. elkanii. Most of these rhizobia induced nodules on L. purpureus, but symbiotic genes were only amplified from the Bradyrhizobium and Rhizobium leguminosarum strains. The nodC and nifH phylogenetic trees defined five lineages corresponding to B. yuanmingense, B. japonicum, B. elkanii, B. jicamae and R. leguminosarum. The coherence of housekeeping and symbiotic gene phylogenies demonstrated that the symbiotic genes of the Lablab rhizobia were maintained mainly through vertical transfer. However, a putative lateral transfer of symbiotic genes was found in the B. liaoningense strain. The results in the present study clearly revealed that L. purpureus was a promiscuous host that formed nodules with diverse rhizobia, mainly Bradyrhizobium species, harboring different symbiotic genes.  相似文献   

17.
In short season areas, low soil temperature is the major limiting factor for symbiotic nitrogen fixation of legume. One greenhouse and four field experiments were conducted in 1999 to determine whether the pre-incubation of Rhizobium leguminosarum bv. viceae with hesperetin and naringenin or application of these compounds onto the seed surface or into the seed furrow at the time of planting can increase pea nodulation and final grain yield. The results from these experiments clearly indicated that application of naringenin and hesperetin by either pre-incubating R. leguminosarum bv. viceae prior to inoculation of plant or directly applying onto the seed surface or into seed furrow at the time of planting can increase pea nodulation, and plant pod numbers. Interactions existed between symbiotic signal compounds and pea cultivars or R. leguminosarum bv. viceae strains. However, there was no impact on the final grain yield by the treatments from the field experiments. The effects of these treatments on the final grain yield have to be farther tested.  相似文献   

18.
Soybean is the most important leguminous crop in Brazil and the nitrogen required for plant growth is supplied byBradyrhizobium bacteria through the symbiotic relation established by the inoculation process. Since 1992, two new strains, CPAC 7 and CPAC 15, which have been shown to increase yields in several field experiments, have been recommended in Brazilian commercial inoculants. CPAC 15 is a natural variant of theB. elkanii SEMIA 566 strain, and was isolated after several years of adaptation to a Brazilian Cerrado soil, while CPAC 7 is a variant ofB. japonicum strain CB 1809, selected under laboratory conditions for higher nodulation and yield. The comparison between parental and variant strains, under greenhouse conditions, showed that both CPAC 15 and CPAC 7 increased N2 fixation rates in relation to the parental strains. The better performance of CPAC 15 was related to an increase in nodule efficiency (mg N2 fixed mg-1 nodule) while with CPAC 7 the higher N2 fixation rates were due to increased nodulation. Both CPAC 15 and CPAC 7 increased nodule occupancy, when co-inoculated at a ratio of 1:1 withB. elkanii 29w, in relation to their parental strains. Variant strains also differed from parental in their ability to increase numbers of root hairs (Hai phenotype) either when inoculated onto plants, or when supernatants of bacteria exposed to seed exudates were used as inoculants. This results lead to the hypothesis that a modification in some of the “common” nodulation genes had occurred. However, the increase in Hai phenotype with CPAC 7 was dependent on the soybean cultivar, indicating a possible alteration in some genotypic specific nodulation gene. Apparently, there were no differences in Nod metabolites produced by strains CPAC 15 and SEMIA 566, but a more detailed chemical analysis would be required to rule out subtle differences. On the contrary, significant differences were found between CPAC 7 and the parental strain CP 1809, in the profile of Nod metabolites. Consequently, it may be possible that diffusable molecules, responsible for Hai phenotype, would be related to nodulation ability, competiviveness, and N2 fixation, resulting in the higher yields that have been associated with CPAC 7 and CPAC 15. For the CPAC 7 strain, the increase in Hai phenotype could be atributed to the differences found in the Nod molecules. Consequently, a high degree of physiological and genetic variability can result from the adaptation of rhizobial strains to the soil. Also, this variability can be found under laboratory conditions, when searching single colonies with specific properties. ei]Section editor: R O D Dixon  相似文献   

19.
A factorial design 23 × 4 with two levels of Mussorie rockphosphate (RP) with or without vesicular-arbuscular mycorrhizal (VAM) fungi and Bradyrhizobium japonicum, and four treatments of phosphate-solubilizing microbes (PSM) Pseudomonas striata, Bacillus polymyxa, Aspergillus awamori was employed using Patharchatta sandy loam soil (Typic Hapludoll). The observations included mycorrhization, nodulation, grain and straw yield, N and P uptake, available soil P and the PSM population in the soil after crop harvest. Inoculation with endophytes alone caused about 70% root colonization. Addition of rockphosphate or inoculation with PSM, except B. polymyxa, stimulated root infection of native as well as introduced VAM endophytes. Application of RP or inoculation with Bradyrhizobium japonicum, mycorrhizal fungi or phosphate-solubilizing microorganisms significantly increased nodulation, N uptake, available soil P and the PSM population in the soil after the crop harvest. The grain and straw yields did not increase following RP addition or mycorrhizal inoculation but increased significantly after inoculation wit Bradyrhizobium or PSM. In general, the application of RP, Bradyrhizobium, VAM and PSM in combinations of any two or three resulted in significant increases in nodulation, plant growth, grain yield and uptake of N and P. Among the four factor interactions, rockphosphate, Bradyrhizobium and P. striata in the absence of VAM resulted in maximal nodulation, grain and straw yields and N uptake by soybean. The highest P uptake by soybean grain was recorded with Bradyrhizobium and A. awamori in the absence of rockphosphate and VAM. Generally, available soil P and PSM population after crop harvest were not significantly increased by the treatment combinations giving the maximal uptake of nutrients. However, they increased significantly in response to PSM, which produced no significant increase in total uptake of nutrients.Research paper no. 7498  相似文献   

20.
Soil bacteria (rhizobia) of the genus Bradyrhizobium form symbiotic relationships with peanut root cells and fix atmospheric nitrogen by converting it to nitrogenous compounds. Inoculation of peanut with rhizobia can enhance the plant’s ability to fix nitrogen from the air and thereby reduce the requirement for nitrogen fertiliser. We evaluated three Bradyrhizobium sp. strains for effect on root nodulation and on pod yield of peanut in Argentina soils, using laboratory and field experiments. Of these, strain C‐145 was the most effective in laboratory studies. In‐furrow inoculation with this strain produced increased nodule number, relative to seed inoculation. However, pod yield was not increased significantly by either type of inoculation. In view of the inconsistent response of peanut to inoculation, we examined the effect of indigenous strains of bradyrhizobia. The high degree of nodulation and nitrogen fixation produced by indigenous rhizobia were sufficient for maximal yield under the field and inoculation conditions used in this study. The data are important for future investigation of alternative inoculant strains and conditions for improving peanut production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号