首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A survey of fragile X syndrome in a sample from Spanish Basque country   总被引:1,自引:0,他引:1  
Fragile X syndrome is the most common inherited form of mental retardation. The syndrome is associated with a CGG repeat expansion in the 5'UTR of the first exon of the FMR1 gene. This gene maps to Xq27.3 and coincides with the cytogenetic fragile site (FRAXA). The present study deals with the prevalence of fragile X syndrome among individuals with mental retardation of unknown cause from institutions and special schools from the Spanish Basque Country. Results of cytogenetic and molecular studies, performed in a group of 134 unrelated individuals (92 males and 42 females) are presented. The cytogenetic marker at Xq27.3 was identified in 12 patients. Other chromosomal abnormalities were found in two cases that this and previous studies confirmed as Angelman and Prader-Willi syndromes. Two males, in whom the cytogenetic marker was identified, were found negative for FRAXA and FRAXE expansion at the molecular level. The present study shows that the frequency of the FRAXA full mutation in individuals of Spanish non-Basque origin is in the range of other Spanish populations. In the sample of Spanish Basque origin we have not found cytogenetic FRAXA site expression, and the CGG repeat size of FMR1 gene is in the normal range. The significance of these results are discussed.  相似文献   

2.
The Fragile X syndrome is, in the majority of cases, caused by CGG trinucleotide amplification within the FMR1 gene. The syndrome is rarely caused by point mutations or deletions. Here we describe a family with 2 sons and 1 daughter affected by Fragile X syndrome and 2 unaffected daughters whose carrier status was unknown prior to this study. Analysis of DNA from each of the 2 daughters revealed two alleles in the normal size range. However, 1 daughter carried one allele of 10 CGG repeats that was not present in either the mother or the father. No evidence for mosaicism could be detected. Haplotype analysis of flanking polymorphic markers revealed that the 10 CGG allele was derived from the mutated allele inherited from the mother. Thus, this case most likely represents an additional case of a reverse mutation from a premutation allele in a female to a normal-sized allele in the offspring. It remains unclear how frequently such reversion events occur. The observation has important consequences for genetic testing, because many laboratories prescreen for the Fragile X syndrome by determining the length of the CGG repeat using PCR. If this shows alleles in the normal size range, a diagnosis of Fragile X syndrome is considered to be excluded. Because the routine PCR and/or Southern blot analyses alone may yield false-negative results in cases of a regression of the number of CGG repeats, we strongly recommend the inclusion of fragment length or haplotype analysis when determining the carrier status within Fragile X syndrome families.  相似文献   

3.
The human FMR1 gene contains a CGG repeat in its 5' untranslated region. The repeat length in the normal population is polymorphic (5-55 CGG repeats). Lengths beyond 200 CGGs (full mutation) result in the absence of the FMR1 gene product, FMRP, through abnormal methylation and gene silencing. This causes Fragile X syndrome, the most common inherited form of mental retardation. Elderly carriers of the premutation, defined as a repeat length between 55 and 200 CGGs, can develop a progressive neurodegenerative syndrome: Fragile X-associated tremor/ataxia syndrome (FXTAS). In FXTAS, FMR1 mRNA levels are elevated and it has been hypothesised that FXTAS is caused by a pathogenic RNA gain-of-function mechanism. We have developed a knock in mouse model carrying an expanded CGG repeat (98 repeats), which shows repeat instability and displays biochemical, phenotypic and neuropathological characteristics of FXTAS. Here, we report further repeat instability, up to 230 CGGs. An expansion bias was observed, with the largest expansion being 43 CGG units and the largest contraction 80 CGG repeats. In humans, this length would be considered a full mutation and would be expected to result in gene silencing. Mice carrying long repeats ( approximately 230 CGGs) display elevated mRNA levels and decreased FMRP levels, but absence of abnormal methylation, suggesting that modelling the Fragile X full mutation in mice requires additional repeats or other genetic manipulation.  相似文献   

4.
A group of mutations characterized by trinucleotide repeat expansion causes human diseases such as the Fragile X syndrome, Huntington disease (HD), and myotonic dystrophy. Methods based on PCR amplification of the CGG and CAG repeats region could facilitate the development of a rapid screening assay; unfortunately, amplification across CGG and CAG repeats can be inefficient and unreliable due to the G + C base composition. The utility of the PCR on modified DNA for amplification of the CGG and CAG repeats at the Fragile X syndrome and HD has been reported. In the present study, we analyzed the utility of PCR on modified DNA as a rapid screening method for diagnosis of patients with Fragile X syndrome and HD. A comparative analysis realized with 38 Fragile X and 29 HD patients showed that the molecular diagnosis by simple PCR on modified DNA has a sensitivity and specificity of 100% in Fragile X patients and 94.1% and 91.6% in HD patients. The results achieved from the statistical analysis allowed us to conclude that the amplification by simple PCR on modified DNA is a reliable and useful method for the molecular diagnosis of the Fragile X syndrome, but not for the HD.  相似文献   

5.
Fragile X syndrome is one of the most frequent causes of mental retardation. Since the phenotype in this syndrome is quite variable, clinical diagnosis is not easy and molecular laboratory diagnosis is necessary. Usually DNA from blood cells is used in molecular tests to detect the fragile X mutation which is characterized by an unstable expansion of a CGG repeat in the fragile X mental retardation gene (FMR1). In the present study, blood and buccal cells of 53 mentally retarded patients were molecularly analyzed for FMR1 mutation by PCR. Our data revealed that DNA extraction from buccal cells is a useful noninvasive alternative in the screening of the FMR1 mutation among mentally retarded males.  相似文献   

6.
Individuals with mental disabilities are a heterogeneous group, mainly when we consider the etiology of mental retardation (MR). Recent advances in molecular genetics techniques have enabled us to unveil more about the molecular basis of several genetic syndromes associated with MR. In this study, we surveyed 85 institutionalized individuals with severe MR, 38 males and 47 females, by two molecular techniques, to detect CGG amplifications in the FMR1 gene. No FRAXA mutations were found in the FMR1 gene, reinforcing the low prevalence of Fragile X syndrome among institutionalized individuals with severe MR. We considered the PCR protocol used adequate for screening males with mental retardation of unknown etiology. The use of the Southern blot is still necessary for the decisive diagnosis of the Fragile X syndrome. To exclude chromosomal abnormalities associated with MR as a possible cause of the phenotype in these individuals, G-banded chromosome analysis was performed in all patients and 7.3% of chromosomal aberrations were found. Our results are similar to those reported previously and point to the necessity of expanding the molecular investigation toward other causes of MR, such as subtle chromosomal rearrangements, as suggested recent by a combination of fluorescence in situ hybridization (FISH) and PCR studies.  相似文献   

7.
Fragile X syndrome, a form of X-linked mental retardation, results from the hyperexpansion of a CGG trinucleotide repeat located in the 5' untranslated region of the fragile X mental retardation (FMR1) gene. Relatively little is known about the initial mutation that causes a stable allele to become unstable and, eventually, to expand to the full mutation. In the present study, we have examined 1,452 parent-child transmissions of alleles of common (< or =39 repeats) or intermediate (40-59 repeats) sizes to study the initial mutation events. Of these, 201 have been sequenced and haplotyped. Using logistic regression analysis, we found that parental origin of transmission, repeat size (for unsequenced alleles), and number of the 3' CGGs (for sequenced alleles) were significant risk factors for repeat instability. Interestingly, transmission of the repeat through males was less stable than that through females, at the common- and intermediate-size level. This pattern differs from that seen for premutation-size alleles: paternally transmitted alleles are far more stable than maternally transmitted alleles. This difference that depends on repeat size suggests either a different mutational mechanism of instability or an increase in selection against sperm as their repeat size increases.  相似文献   

8.
The 5′ untranslated region of the fragile X mental retardation gene, FMR1, contains a polymorphic CGG repeat. Expansions of this repeat are associated with a spectrum of disorders. Full mutation alleles, repeats ≥ 200, are associated with fragile X syndrome. Premutation alleles, repeats of ~55–199, are associated with a tremor-ataxia syndrome most commonly in older males and primary ovarian insufficiency in females. However, the neuropsychological impact of carrying a premutation allele is presently unclear in younger adults. In this study, we analyzed neuropsychological scores for 138 males and 506 females ascertained from the general population and from families with a history of fragile X syndrome. Subjects were age 18–50 years and had varying repeat lengths. Neuropsychological scores were obtained from measures of general intelligence, memory, and executive functioning, including attention. Principal component analysis followed by varimax rotation was used to create independent factors for analysis. These factors were modeled for males and females separately via a general linear model that accounted for correlation among related subjects. All models were adjusted for potential confounders, including age at testing, ethnicity, and household income. Among males, no repeat length associations were detected for any factor. Among females, only a significant association with repeat length and self-report attention (p < 0.01) was detected, with premutation carriers self-reporting significantly more attention-related problems compared to noncarriers. No significant interactions between repeat length and age were detected. Overall, these results indicate the lack of a global neuropsychological impact of carrying a premutation allele among adults under the age of 50.  相似文献   

9.
The fragile X mental retardation syndrome is caused by an expansion of a trinucleotide repeat (CGG)n in the FMR-1 gene. Molecular genetic study of fragile X provides accurate diagnosis and facilitates genetic counseling in families with affected members. We present here the molecular study of 59 Spanish fragile X syndrome families using probe StB 12.3 and the polymerase chain reaction (PCR) of the (CGG)n repeat sequence of the FMR-1 gene. The results obtained have allowed us to characterize 455 individuals, including eight prenatal diagnoses. The clinical diagnosis of fragile X in 89 affected males was confirmed, 137 female carriers were identified (48 of whom were mentally retarded), 176 individuals at risk were found not to have the expansion, and 12 cases of normal transmitting males (NTM) were detected. In the sample studied, no de novo mutations were detected, nor any mutation different from that described for the (CGG)n expansion. One nonmentally retarded male was detected as having an unmethylated CpG island for the FMR-1 gene, but with more than 200 CGG repeats (high functioning male). The analysis of the (CGG)n repeat in 208 normal chromosomes gave an allele distribution similar to that in other Caucasoid population groups, with alleles of 29 and 30 CGG repeats accounting for 46% of the chromosomes. The combination of Southern analysis and PCR of the (CGG)n repeat is highly efficient for diagnosis, compared with cytogenetic techniques, especially in the detection of female carriers, NTMs, and prenatal diagnosis, enabling accurate genetic counseling to be provided in all cases.  相似文献   

10.
11.
Fragile X syndrome is the most common cause of inherited mental retardation. The incidence has been estimated to be 1 in 1250 males and 1 in 2000 females. Molecular studies have shown that 95% of fragile X syndrome cases are caused by the expansion of a CGG triplet in the FMR1 gene with hypermethylation of the adjacent CpG island. In spite of the high incidence of this syndrome, a female with both FMR1 genes in the expanded form has never been reported. We present here a female from the Canary Islands presenting mental retardation and attention problems. Molecular analysis has revealed that both of her FMR1 genes have the CGG expansion, one with a premutation and the other with a full mutation. We have studied the CGG repeat in the FMR1 gene in 64 members of her family and detected 33 normal individuals, 14 carriers with the premutation (1 male and 13 females), and 18 individuals with full mutations (8 males and 10 females). The index case illustrates that the possibility of both parents being carriers of the fragile X syndrome premutation should be considered in consanguineous families or in small communities. Received: 4 April 1996 / Revised: 3 May 1996  相似文献   

12.
13.
Fragile X syndrome is associated with an unstable CGG repeat sequence in the 5' untranslated region of the first exon of the FMR1 gene. The present study involved the evaluation of factors implicated in CGG repeat stability in a normal sample from two Basque valleys (Markina and Arratia), to discover whether the Basque population shows allelic diversity and to identify factors involved, by using the data in conjunction with previous findings. The study was based on a sample of 204 and 58 X chromosomes from the Markina and Arratia valleys, respectively. The CGG repeat, the AGG interspersion and two flanking microsatellite markers, FRAXAC1 and DXS548, were examined. In the Markina valley, gray zone alleles (> or =35 CGG repeats) were associated with anchoring AGGs, with the longest 3' pure CGG repeats of the valley (=15), with the 5' instability structure 9+n and with one principal fragile X FRAXAC1-DXS548 haplotype 42-50. In the Arratia valley, gray zone alleles (> or =35 CGG repeats) showed the highest frequency among the Basque samples analyzed, and were associated with anchoring AGGs, with the longest 3' pure repeats (> or =20), with the 5' instability structure 9+n and with one "normal" FRAXAC1-DXS548 haplotype 38-40 (these data from Arratia suggest the existence of a "protective" haplotype). The results showed, on the one hand, differences between Markina and Arratia in factors implicated in CGG repeat instability and, on the other hand, a great similarity between the general Basque sample from Biscay and the Markina valley.  相似文献   

14.
Fragile X syndrome, the most common cause of hereditary mental retardation, results from amplification of a CGG trinucleotide repeat in the FMR1 gene. The transmission of the CGG repeat from premutated individuals to their premutated descendants is usually unstable, showing an increase in the size of the repeat. We report here a family which exhibits recurrent and unexpected transmission of the maternal premutation to three daughters. The first daughter exhibited mosaicism with two premutated alleles, one contracted and the other expanded. The second daughter showed a reversion from the maternal premutation to the normal range, and the third carried an expanded premutated allele associated with an expanded paternal allele within the normal range. These variations in the size of the CGG repeat may result from many different mechanisms such as DNA polymerase slippage on the leading or lagging strand during replication, large contractions of repeats on the parental strand during replication, or recombination through unequal crossover between sister chromatids. Our results suggest that the variation of the CGG premutated alleles in this family may be the result of intrinsic instability associated with a trans-acting factor such as a mismatch repair gene product. Received: 21 August 1995 / Revised: 21 September 1995  相似文献   

15.
Pathogenic mutations involving DNA repeat expansions are responsible for over 20 different neuronal and neuromuscular diseases. All result from expanded tracts of repetitive DNA sequences (mostly microsatellites) that become unstable beyond a critical length when transmitted across generations. Nearly all are inherited as autosomal dominant conditions and are typically associated with anticipation. Pathologic unstable repeat expansions can be classified according to their length, repeat sequence, gene location and underlying pathologic mechanisms. This review summarizes the current contribution of mutant pluripotent stem cells (diseased human embryonic stem cells and patient-derived induced pluripotent stem cells) to the research of unstable repeat pathologies by focusing on particularly large unstable noncoding expansions. Among this class of disorders are Fragile X syndrome and Fragile X-associated tremor/ataxia syndrome, myotonic dystrophy type 1 and myotonic dystrophy type 2, Friedreich ataxia and C9 related amyotrophic lateral sclerosis and/or frontotemporal dementia, Facioscapulohumeral Muscular Dystrophy and potentially more. Common features that are typical to this subclass of conditions are RNA toxic gain-of-function, epigenetic loss-of-function, toxic repeat-associated non-ATG translation and somatic instability. For each mechanism we summarize the currently available stem cell based models, highlight how they contributed to better understanding of the related mechanism, and discuss how they may be utilized in future investigations.  相似文献   

16.
Fragile X Syndrome (FXS) is associated with an unstable CGG repeat sequence in the 5’ untranslated region in the first exon of the FMR1 gene which resides at chromosome position Xq27.3 and is coincident with the fragile site FRAXA. The CGG sequence is polymorphic with respect to size and purity of the repeat. Interpopulation variation in the polymorphism of the FMR1 gene and consequently, in the predisposition to FXS due to the prevalence of certain unstable alleles has been observed. Spanish Basque population is distributed among narrow valleys in northeastern Spain with little migration between them until recently. This characteristic may have had an effect on allelic frequency distributions. We had previously reported preliminary data on the existence of FMR1 allele differences between two Basque valleys (Markina and Arratia). In the present work we extended the study to Uribe, Gernika, Durango, Goierri and Larraun, another five isolated valleys enclosing the whole area within the Spanish Basque region. We analyzed the prevalence of FMR1 premutated and intermediate/grey zone alleles. With the aim to complete the previous investigation about the stability of the Fragile X CGG repeat in Basque valleys, we also analyzed the existence of potentially unstable alleles, not only in relation with size and purity of CGG repeat but also in relation with DXS548 and FRAXAC1 haplotypes implicated in repeat instability. The data show that differences in allele frequencies as well as in the distribution of the mutational pathways previously identified are present among Basques. The data also suggest that compared with the analyzed Basque valleys, Gernika had increased frequency of susceptibility to instability alleles, although the prevalence of premutation and intermediate/grey zone alleles in all the analyzed valleys was lower than that reported in Caucasian populations.Key Words: Fragile X syndrome, FMR1 gene, CGG repeat, FRAXAC1, DXS548, basque country.  相似文献   

17.
18.
Fragile X syndrome is a neurodevelopmental disorder that is not known to have any progressive neurological sequelae in adulthood. However, a neurological condition involving intention tremor, ataxia, and cognitive decline has recently been identified among older male carriers of premutation alleles of the FMR1 gene. This condition is clinically distinct from fragile X syndrome and arises through a different molecular mechanism involving the same gene (FMR1). Characteristic findings on magnetic resonance imaging include cerebral and cerebellar volume loss and altered signal intensities of the middle cerebellar peduncles. A striking feature of this fragile X-associated tremor/ataxia syndrome is the presence of ubiquitin-positive neuronal and astroglial intranuclear inclusions. Unlike the CAG repeat expansion diseases, which lead to altered protein products, there is no known protein abnormality among FMR1 premutation carriers. Thus, inclusion formation may reflect a gain-of-function effect of the FMR1 mRNA or the CGG repeat itself. Finally, since this syndrome may represent one of the more common single-gene causes of tremor, ataxia, and dementia among older males, FMR1 DNA testing should be considered when evaluating adult patients with tremor/ataxia.  相似文献   

19.
A fragile gene     
Fragile X syndrome is the most common cause of inherited mental retardation in humans. The fragile X gene (FMR1) has been cloned and the mutation causing the disease is known. The molecular basis of the disease is an expansion of a trinucleotide repeat sequence (CGG) present in the first exon within the 5′ untranslated region of the FMR1 gene. Affected individuals have repeat CGG sequences of above 200. As a result the gene is not producing protein. It has been shown that the FMR1 protein has RNA binding activity, but the function of this RNA binding activity is not known. The timing and mechanism of repeat amplification are not yet understood. An animal model for fragile X syndrome has been generated, which can be used to study the clinical and biochemical abnormalities caused by absence of FMR1 protein product.  相似文献   

20.
Fragile X syndrome results from mutations in a (CGG)n repeat found in the coding sequence of the FMR-1 gene. Analysis of length variation in this region in normal individuals shows a range of allele sizes varying from a low of 6 to a high of 54 repeats. Premutations showing no phenotypic effect in fragile X families range in size from 52 to over 200 repeats. All alleles with greater than 52 repeats, including those identified in a normal family, are meiotically unstable with a mutation frequency of one, while 75 meioses of alleles of 46 repeats and below have shown no mutation. Premutation alleles are also mitotically unstable as mosaicism is observed. The risk of expansion during oogenesis to the full mutation associated with mental retardation increases with the number of repeats, and this variation in risk accounts for the Sherman paradox.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号