首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Exposure to pathogenic mineral dusts and fibres is associated with pulmonary changes including fibrosis and cancer. Investigations into aetiological mechanisms of these diseases have identified modifications in specific macromolecules as well as changes in certain early processes, which have preceded fibrosis and cancer. Peroxidation of lipids is one such modification, which is observed following exposure to mineral dusts and fibres. Their ability to initiate lipid peroxidation and the parameters that determine this ability have recently been reviewed.1 Part II of this review examines the relationship between the capacity of mineral dusts and fibres to initiate lipid peroxidation and a number of pathological changes they produce.

The oxidative modification of polyunsaturated fatty acids is a major contributor to membrane damage in cells and has been implicated in a great variety of pathological processes. In most pathological conditions where an induction of lipid peroxidation is observed it is assumed to be the consequence of disease, without further establishing if the induction of lipid peroxidation may have preceded or accompanied the disease. In the great majority of instances, however, despite the difficulty in proving this association, a causal relationship between lipid peroxidation and disease cannot be ruled out.  相似文献   

2.
《Free radical research》2013,47(10):1098-1124
Abstract

Oxidative stress and resulting lipid peroxidation is involved in various and numerous pathological states including inflammation, atherosclerosis, neurodegenerative diseases and cancer. This review is focused on recent advances concerning the formation, metabolism and reactivity towards macromolecules of lipid peroxidation breakdown products, some of which being considered as ‘second messengers’ of oxidative stress. This review relates also new advances regarding apoptosis induction, survival/proliferation processes and autophagy regulated by 4-hydroxynonenal, a major product of omega-6 fatty acid peroxidation, in relationship with detoxication mechanisms. The use of these lipid peroxidation products as oxidative stress/lipid peroxidation biomarkers is also addressed.  相似文献   

3.
The efficiency of hydroperoxides (tert-butyl hydroperoxide, hydrogen peroxide) and sulfhydryl reagents (iodoacetamide, p-chloromercuribenzene sulfonic acid) as glyceollin elicitors was examined in relation to sulfhydryl oxidation, or alteration, and to lipid peroxidation, in 3-d-old soybean hypocotyl/radicle, Glycine max. These oxidative events were investigated as possible early steps in the transduction mechanisms leading to phytoalexin synthesis. Free protein sulfhydryl groups were not modified after any of the eliciting treatments, thus indicating that immediate massive protein oxidation or modification cannot be considered a signal transduction step. Unlike sulfhydryl reagents, which led to a decrease of the free nonprotein sulfhydryl group (free np-SH) pool under all of the eliciting conditions, the results obtained with hydroperoxides indicated that immediate oxidation of the np-SH is not required for the signal transduction. Moreover, elicitation with 10 mM tertbutyl hydroperoxide did not lead to further oxidation or to changes in np-SH level during the critical phase of phenylalanine ammonialyase activation (the first 20 h), suggesting that np-SH modifications are probably not involved in hydroperoxide-induced elicitation. On the other hand, all treatments leading to significant glyceollin accumulation were able to trigger a rapid (within 2 h) lipid peroxidation process, whereas noneliciting treatments did not. In addition, transition metals, such as Fe2+ and Cu+, were shown to stimulate both hydrogen peroxide-induced lipid peroxidation and glyceollin accumulation, again emphasizing that the two processes are at least closely linked in soybean. Among the oxidative processes triggered by activated oxygen species, oxidation of sulfhydryl compounds, or lipid peroxidation, our results suggest that lipid peroxidation is sufficient to initiate glyceollin accumulation in soybean. This further supports the hypothesis that lipid peroxidation could be involved as a step in the signal cascade that leads to induction of plant defenses.  相似文献   

4.
The effectiveness of radiation-generated HO
radicals in initiating erythrocyte hemolysis in the presence of oxygen and under anaerobic conditions and prehemolytic structural changes in the plasma-erythrocyte membrane were studied. Under anaerobic conditions the efficacy of HO
radicals in induction of hemolysis was 16-fold lower than under air. In both conditions, hemolysis was the final consequence of changes of the erythrocyte membrane. Preceding hemolysis, the dominating process under anaerobic conditions was the aggregation of membrane proteins. The aggregates were principally formed by -S-S- bridges. A decrease in spectrin and protein of band 3 content suggests their participation in the formation of the aggregates. These processes were accompanied by changes in protein conformation determined by means of 4-maleimido-2,2,6,6-tetramethylpiperidine-N-oxyl (MSL) spin label attached to membrane proteins. Under anaerobic conditions, in the range of prehemolytical doses, the reaction of HO
with lipids caused a slight (10-16%) increase in fluidity of the lipid bilayer in its hydrophobic region with a lack of lipid peroxidation. However, in the presence of oxygen, hemolysis was preceded by intense lipid peroxidation and by profound changes in the conformation of membrane proteins. At the radiation dose that normally initiates hemolysis a slight aggregation of proteins was observed. Changes were not observed in particular protein fractions. It can be suggested the cross-linking induced by HO
radicals under anaerobic conditions and a lack of lipid peroxidation are the cause of a decrease in erythrocyte sensitivity to hemolysis. Contrary, under aerobic conditions, molecular oxygen suppresses cross-linking, catalysing further steps of protein and lipid oxidation, which accelerate hemolysis.  相似文献   

5.
Renal fibrosis is a common pathological process that occurs with diverse etiologies in chronic kidney disease. However, its regulatory mechanisms have not yet been fully elucidated. Ferroptosis is a form of non-apoptotic regulated cell death driven by iron-dependent lipid peroxidation. It is currently unknown whether ferroptosis is initiated during unilateral ureteral obstruction (UUO)-induced renal fibrosis and its role has not been determined. In this study, we demonstrated that ureteral obstruction induced ferroptosis in renal tubular epithelial cells (TECs) in vivo. The ferroptosis inhibitor liproxstatin-1 (Lip-1) reduced iron deposition, cell death, lipid peroxidation, and inhibited the downregulation of GPX4 expression induced by UUO, ultimately inhibiting ferroptosis in TECs. We found that Lip-1 significantly attenuated UUO-induced morphological and pathological changes and collagen deposition of renal fibrosis in mice. In addition, Lip-1 attenuated the expression of profibrotic factors in the UUO model. In vitro, we used RSL3 treatment and knocked down of GPX4 level by RNAi in HK2 cells to induce ferroptosis. Our results indicated HK2 cells secreted various profibrotic factors during ferroptosis. Lip-1 was able to inhibit ferroptosis and thereby inhibit the secretion of the profibrotic factors during the process. Incubation of kidney fibroblasts with culture medium from RSL3-induced HK2 cells promoted fibroblast proliferation and activation, whereas Lip-1 impeded the profibrotic effects. Our study found that Lip-1 may relieve renal fibrosis by inhibiting ferroptosis in TECs. Mechanistically, Lip-1 could reduce the activation of surrounding fibroblasts by inhibiting the paracrine of profibrotic factors in HK2 cells. Lip-1 may potentially be used as a therapeutic approach for the treatment of UUO-induced renal fibrosis.Subject terms: Cell death, RNAi, Urinary tract obstruction  相似文献   

6.
Yang  Wan-lin  Sun  Albert Y. 《Neurochemical research》1998,23(11):1387-1394
Paraquat was taken up by PC12 cells in a carrier-mediated, saturable manner. When PC12 cells were permeabilized with digitonin (50 g/ml) lipid peroxidation was observed after paraquat treatment in the presence of NADPH and chelated iron. The fact that lipid peroxidation preceded the appearance of LDH release provides positive evidence that lipid peroxidation may be one of the important factors leading to cytotoxicity of cells. Furthermore, the fact that addition of superoxide dismutase, catalase and promethazine efficiently blocked the malondialdehyde formation and attenuated the cell death indicated the involvement of reactive oxygen radicals in mediating the cytotoxicity induced by paraquat. Taken together the results present in vitro evidence that neurotoxicity of paraquat may be a consequence of cellular lipid peroxidation, which leads to cell death and may have great implications in assessing the risk of exposure to paraquat in Parkinson's disease.  相似文献   

7.
Young, adult, and old rats were used to study the effect of age on the integrity and functioning of brain synaptosomes. An evaluation was made of the differences in lipid composition, membrane fluidity, Na+, K(+)-ATPase activity, and susceptibility to in vitro lipid peroxidation. There was an age-related increase in synaptosomal free fatty acids, with no modification in acyl chain composition, and a decrease in membrane phospholipids which increased the cholesterol/phospholipid mole ratio. With altered lipid composition, there was a corresponding age-dependent decrease in membrane fluidity, a reduction of Na+, K(+)-ATPase activity, and an overall greater susceptibility to in vitro lipid peroxidation. Furthermore, lipid peroxidation promoted strong modifications of the membrane fluidity, lipid composition, and Na+,K(+)-ATPase activity just as aging did, thus indicating a possible contribution of oxidative damage to ageing processes. The cases studied revealed that the greater responsiveness of old membranes to in vitro lipid peroxidation resulted in the highest degree of membrane alteration, indicating that all pathological states known to promote a peroxidative injury can have even more dramatic consequences when they take place in old brain.  相似文献   

8.
There is a dynamic interplay between pro- and anti-oxidant substances in human ejaculate. Excessive reactive oxygen species (ROS) generation can overwhelm protective mechanism and initiate changes in lipid and/or protein layers of sperm plasma membranes. Additionally, changes in DNA can be induced. The essential steps of lipid peroxidation have been listed as well as antioxidant substances of semen. A variety of detection techniques of lipid peroxidation have been summarized together with the lipid components of sperm membranes that can be subjected to stress. It is unsolved, a threshold for ROS levels that may induce functional sperm ability or may lead to male infertility.  相似文献   

9.
Purinergic signalling is involved in a number of physiological and pathophysiological activities in the lower urinary tract. In the bladder of laboratory animals there is parasympathetic excitatory cotransmission with the purinergic and cholinergic components being approximately equal, acting via P2X1 and muscarinic receptors, respectively. Purinergic mechanosensory transduction occurs where ATP, released from urothelial cells during distension of bladder and ureter, acts on P2X3 and P2X2/3 receptors on suburothelial sensory nerves to initiate the voiding reflex, via low threshold fibres, and nociception, via high threshold fibres. In human bladder the purinergic component of parasympathetic cotransmission is less than 3 %, but in pathological conditions, such as interstitial cystitis, obstructed and neuropathic bladder, the purinergic component is increased to 40 %. Other pathological conditions of the bladder have been shown to involve purinoceptor-mediated activities, including multiple sclerosis, ischaemia, diabetes, cancer and bacterial infections. In the ureter, P2X7 receptors have been implicated in inflammation and fibrosis. Purinergic therapeutic strategies are being explored that hopefully will be developed and bring benefit and relief to many patients with urinary tract disorders.  相似文献   

10.
Hepatic stellate cells (HSCs) are intralobular connective tissue cells presenting myofibroblast or lipocyte phenotypes. They participate in the homeostasis of liver extracellular matrix, repair, regeneration and fibrosis under the former phenotype, and control retinol metabolism, storage and release under the latter one. Responding to systemic or local demands, they can convert into the required phenotype with deep modifications of their structures. Using immunofluorescence microscopy and Western blots, we investigated the expression and organisation of actin filaments and of two actin-binding proteins, alpha-actinin and tropomyosin, in the cloned GRX cell line representative of murine HSCs. GRX cells expressing the myofibroblast phenotype showed typical well-organised actin stress-fibres, anchored at the focal adhesions located at the cell periphery. Retinol treatment induced active reorganisation of the cytoskeleton. The major stress fibres were reduced in length, and frequently formed a polygonal meshwork. Subsequently, they fragmented and generated diffuse or granular actin in the perinuclear area, a thin continuous layer around lipid droplets and, in fully converted lipocytes, a peripheral layer of thin actin fibres. alpha-Actinin and tropomyosin were present only in lipocytes, co-distributed with actin in a granular form. Since the cytoskeleton reorganisation preceded lipid accumulation, we conclude that the induction of the lipocyte phenotype represents a full reprogramming of cell gene expression and function. We consider that both the lipocyte and the myofibroblast phenotypes should be considered "activated states" of HSCs, each responding to specific physiological or pathological modifications of liver functions.  相似文献   

11.
The prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing globally. NAFLD includes non-alcoholic fatty liver (NAFL) and non-alcoholic steatohepatitis (NASH). NASH is the pathological form of the disease characterized by liver steatosis, inflammation, cell injury, and fibrosis. A fundamental contributor to NASH is the imbalance between lipid accretion and disposal. The accumulation of liver lipids precipitates lipotoxicity and the inflammatory contributions to disease progression. This review defines the role of dysregulated of lipid disposal in NAFLD pathophysiology. The characteristic changes in mitochondrial oxidative metabolism pathways and the factors promoting these changes across the spectrum of NAFLD severity are detailed. This includes pathway-specific and integrative perturbations in mitochondrial β-oxidation, citric acid cycle flux, oxidative phosphorylation, and ketogenesis. Moreover, well-recognized and emerging mechanisms through which dysregulated mitochondrial oxidative metabolism mediates inflammation, fibrosis, and disease progression are highlighted.  相似文献   

12.
13.
The production of reactive oxygen species is a regular feature of life in the presence of oxygen. Some reactive oxygen species possess sufficient energy to initiate lipid peroxidation in biological membranes, self-propagating reactions with the potential to damage membranes by altering their physical properties and ultimately their function. Two of the most prominent patterns of lipid restructuring in membranes of ectotherms involve contents of polyunsaturated fatty acids and ratios of the abundant phospholipids, phosphatidylcholine and phosphatidylethanolamine. Since polyunsaturated fatty acids and phosphatidylethanolamine are particularly vulnerable to oxidation, it is likely that higher contents of these lipids at low body temperature elevate the inherent susceptibility of membranes to lipid peroxidation. Although membranes from animals living at low body temperatures may be more prone to oxidation, the generation of reactive oxygen species and lipid peroxidation are sensitive to temperature. These scenarios raise the possibility that membrane susceptibility to lipid peroxidation is conserved at physiological temperatures. Reduced levels of polyunsaturated fatty acids and phosphatidylethanolamine may protect membranes at warm temperatures from deleterious oxidations when rates of reactive oxygen species production and lipid peroxidation are relatively high. At low temperatures, enhanced susceptibility may ensure sufficient lipid peroxidation for cellular processes that require lipid oxidation products.  相似文献   

14.
Free radicals and reactive oxygen species (ROS) participate in physiological and pathological processes in the thyroid gland. Bivalent iron cation (ferrous, Fe(2+)), which initiates the Fenton reaction (Fe(2+) + H2O2 --> Fe(3+) + *OH + OH(-)) is frequently used to experimentally induce oxidative damage, including that caused by lipid peroxidation. Lipid peroxidation is involved in DNA damage, thus indirectly participating in the early steps of carcinogenesis. In turn, melatonin is a well-known antioxidant and free radical scavenger. The aim of the study was to estimate the effect of melatonin on basal and iron-induced lipid peroxidation in homogenates of the porcine thyroid gland. In order to determine the effect of melatonin on the auto-oxidation of lipids, thyroid homogenates were incubated in the presence of that indoleamine in concentrations of 0.0, 0.00001, 0.0001, 0.001, 0.01, 0.1, 0.25, 0.5, 1.0, 2.5, or 5.0 mM. To study melatonin effects on iron-induced lipid peroxidation, the homogenates were incubated in the presence of FeSO(4) (40 microM) plus H2O2 (0.5 mM), and, additionally, in the presence of melatonin in the same concentrations as above. The degree of lipid peroxidation was expressed as the concentration of malondialdehyde + 4-hydroxyalkenals (MDA + 4-HDA) per mg protein. Melatonin, in a concentration-dependent manner, decreased lipid peroxidation induced by Fenton reaction, without affecting the basal MDA + 4-HDA levels. In conclusion, melatonin protects against iron + H2O2-induced peroxidation of lipids in the porcine thyroid. Thus, the indoleamine would be expected to prevent pathological processes related to oxidative damage in the thyroid, cancer initiation included.  相似文献   

15.
J M Gutteridge 《FEBS letters》1984,172(2):245-249
Iron salts stimulate lipid peroxidation by decomposing lipid peroxides to produce alkoxyl and peroxyl radicals which initiate further oxidation. In aqueous solution ferrous salts produce OH. radicals, a reactive species able to abstract hydrogen atoms from unsaturated fatty acids, and so can initiate lipid peroxidation. When iron salts are added to lipids, containing variable amounts of lipid peroxide, the former reaction is favoured and OH. radicals contribute little to the observed rate of peroxidation. When iron is complexed with EDTA, however, lipid peroxide decomposition is prevented, but the complex reacts with hydrogen peroxide to form OH. radicals which are seen to initiate lipid peroxidation. Superoxide radicals appear to play an important part in reducing the iron complex.  相似文献   

16.
This article is a study of the relationship between lipid peroxidation and protein modification in beef heart submitochondrial particles, and the protective effect of endogenous ubiquinol (reduced coenzyme Q) against these effects. ADP-Fe and ascorbate were used to initiate lipid peroxidation and protein modification, which were monitored by measuring TBARS and protein carbonylation, respectively. Endogenous ubiquinone was reduced by the addition of succinate and antimycin. The parameters investigated included extraction and reincorporation of ubiquinone, and comparison of the effect of ubiquinol with those of various antioxidant compounds and enzymes, as well as the iron chelator EDTA. Under all conditions employed there was a close correlation between lipid peroxidation and protein carbonylation, and the inhibition of these effects by endogenous ubiquinol. SDS-PAGE analysis revealed a differential effect on individual protein components and its prevention by ubiquinol. Conceivable mechanisms behind the observed oxidative modifications of membrane phospholipids and proteins and of the role of ubiquinol in preventing these effects are considered.  相似文献   

17.
This study examined the generation of reactive oxygen species (ROS) and the induction of lipid peroxidation by carcinogenic iron(III)-NTA complex (1:1), which has three conformations with two pKa values (pKa1 approximately 4, pKa2 approximately 8). These conformations are type (a) in acidic conditions of pH 1-6, type (n) in neutral conditions of pH 3-9, and type (b) in basic conditions of pH 7-10. The iron(III)-NTA complex was reduced to iron(II) complex under cool-white fluorescent light without the presence of any reducer. The reduction rates of three species of iron(III)-NTA were in the order type (a) > type (n) > type (b). Iron(III)-NTA-dependent lipid peroxidation was induced in the presence and absence of preformed lipid peroxides (L-OOH) through processes associated with and without photoreduction of iron(III). The order of the abilities of the three species of iron(III)-NTA to initiate the three mechanisms of lipid peroxidation was: (1) type (a) > type (n) > type (b) in lipid peroxidation that is induced L-OOH- and H2O2-dependently and mediated by the photoreduction of iron(III); (2) type (b) > type (n) > type (a) in lipid peroxidation that is induced L-OOH- and H2O2-dependently but not mediated by the photoreduction of iron(III); (3) type (n) > type (b) > type (a) in lipid peroxidation that is induced peroxide-independently and mediated by the photoactivation but not by the photoreduction of iron(III). The rate of lipid peroxidation induced L-OOH-dependently is faster than that induced H2O2-dependently in the mechanism (1), but the rate of lipid peroxidation induced H2O2-dependently is faster than that induced L-OOH-dependently in the mechanism (2). In the lag process of mechanism (3), L-OOH and/or some free radical species, not 1O2, were generated by photoactivation of iron(III)-NTA. These multiple pro-oxidant properties that depend on the species of iron(III)-NTA were postulated to be a principal cause of its carcinogenicity.  相似文献   

18.
脂质过氧化引起的DNA损伤研究进展   总被引:43,自引:0,他引:43  
脂质过氧化可以引起各种碱基损伤、DNA链断裂和各种荧光产物生成,并对DNA分子鸟嘌呤碱基具有选择性损伤.过渡金属离子可以明显加深脂质过氧化对DNA的损伤程度.多种抗氧化剂、活性氧自由基清除剂对脂质过氧化引起的DNA损伤有一定程度的保护作用.具有致突、致癌作用的8-羟基鸟嘌呤已经观察到.脂质过氧化的致突变、致癌变作用机制引起了人们的极大兴趣.  相似文献   

19.
We studied the activity of NADPH-cytochrome P-450 reductase, NADPH- and ascorbate-dependent systems of lipid peroxidation in liver microsomes, the activity of superoxide dismutase in the supernatant and the level of malonic acid dialdehyde in liver tissue of rats of various age. The activity of lipid peroxidation system and the malonic dialdehyde content in the early postnatal period increased to the adult level. The NADPH-cytochrome P-450 reductase activity increased during the first four months of animals life while that of superoxide dismutase increased until the animals were seven months old. A single administration of polychlorinated diphenyls at a dose of 500 mg/kg (1/10 LD50) to pregnant rats drastically stimulated and changed the pattern of the studied activities in their offspring. The role of lipid peroxidation in modification of microsomal membranes after the monooxygenase system induction by polychlorinated diphenyls in early ontogenesis is discussed.  相似文献   

20.
The goal of our study was to investigate the mechanism by which changes in extracellular pH influence lipid peroxidation processes. Ferrous iron can react with hydroperoxides, via a Fenton-type reaction, to initiate free radical chain processes. Iron is more soluble at lower pH values, therefore we hypothesized that decreasing the environmental pH would lead to increased iron-mediated lipid peroxidation. We used Photofrin, a photosensitizer that produces singlet oxygen, to introduce lipid hydroperoxides into leukemia cells (HL-60, K-562, and L1210). Singlet oxygen reacts with the PUFA of cells producing lipid hydroperoxides. Using EPR spin trapping with POBN, free radical formation from HL-60 cells was only detected when Photofrin, light, and ferrous iron were present. Free radical formation increased with increasing iron concentration; in the absence of extracellular iron, radical formation was below the limit of detection and lipid hydroperoxides accumulated in the membrane. In the presence of iron, lipid-derived radical formation in cells is pH dependent; the lower the extracellular pH (7.5-5.5), the higher the free radical flux; the lower the pH, the greater the membrane permeability induced in K-562 cells, as determined by trypan blue dye exclusion. These data demonstrate that lipid peroxidation processes, mediated by iron, are enhanced with decreasing extracellular pH. Thus, acidic pH not only releases iron from "safe" sites, but this iron will also be more damaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号